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Durability of bonded aircraft structure

« Motivation and Key Issues

— Adhesive bonding is a key path towards reduced weight in aerospace
structures.

— Certification requirements for bonded structures are not well defined.

* Objective
— Describe plastic adhesive response.
— Develop time-dependent adhesive models.

* Approach

— Experiments designed to clarify constitutive relations.
— Develop FEA Models of adhesive bonds.
— Compare models with experiments that are unlike constitutive tests.
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Durability of adhesive bonded joints in
aerospace structures
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Plasticity : Hardening Rule: Challenges
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Plasticity : Hardening Rule: in Shear

600 sec 600 sec

Load
o

C
oy Size of yield

Reverse surface = nrp - ncy !
loading

Time

v'JZ v
Schematic presentation of cyclic shear
* |Initial size : |}, = 274 loading
* Kinematic: B, = 15 — T = 2T, * tensile yield (nyy)

* tensile peak (nyp)

* compressive yield (n¢y)

* Combined: 27y < ¥, = (15 — 7p) < 274 « compressive peak (ncp)

TBYTD Size of yield surface at Nth cycle: nyp — ncy
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Plasticity : Hardening Rule: Testing

Schematic locations of
points tracked to
calculate strain

Tapg = ————
avg A

F cos@

dvi_;

Cyclic testing of scarf joint

Tavg (D - t)
(=)

Y12 =

on an Instron to quantify

t

adhesive hardening

Scarf fixture for tension-
compression testing and
assembly

Image analysis software (Vic
3D) used to analyze speckle
images for strain calculation
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Plasticity : Hardening Rule: Quantification
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Initial size : Y, = 27, = 43.1

Yk =Tg —T¢c = 43.1

=  0.2% offset criterion used to
determine yield point

= Y, ~43.1 MPa
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2(1+y) Tip=1cy Tep—21v 21— 2cy  2¢p— 3y
Sequential position of yield surface

What we found: kinematic behavior dominated hardening mechanism of tough

adhesive.
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Plasticity : Hardening Rule: Quantification
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»  0.2% offset criterion used to determine yield point
= 80 ksi (isotropic) > 60 ksi (actual size) > 58 ksi (kinematic)

k =91%

(91% kinematic & 9% isotropic)

2(1TY) 1TP_ 1CY 1CP_ 2TY 2TP_ 2CY

Sequential position of yield surface
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What we found:

Standard adhesive demonstrated combined hardening
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Plasticity: Yield Criterion: Challenges

60

-60
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Schematic yield surface in normal-normal stress state: Adhesive joints don’t soften at yield in
Solid line = von Mises (typically used for metals) compression.
Dotted line = Drucker-Prager (typically used for rocks, concrete, soil) .  Consider normal-shear
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Plasticity: Yield Criterion: Test Results
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What we found:

von Mises: best fit
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Plasticity: Yield Criterion: Test Results
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Plasticity: Numerical Modeling: Tensile Input Properties

w."“ L 2 *

+ Thin film Tension: Tough Adhesive

A Thin film Tension: Standard Adhesive

0.1 0.2 0.3

Schematic butt joint with dimensions,
load applied in the X direction

Butt joint being
tested on an Instron
load frame
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Plasticity: Numerical Modeling: Tensile Input Properties
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Plasticity: Numerical Modeling: Shear Joints

a o)

Testingon  siandard Tough
Instron adhesive adhesive

FEA
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Plasticity: Validation of Yield Criterion (lap shear coupon)

40
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30 = °
25
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Drucker Prager 10 - - Drucker Prager, fit
== -Eqs. 2 and 4 s vy Eq. 2 and fit
0
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What we found: use of mixed mode lap-shear joint

von Mises criterion better explains adhesive yielding

Adhesive yielding is not sensitive to hydrostatic pressure.
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Plasticity: Numerical Modeling: Validation of Hardening Rule
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Plasticity: Numerical Modeling: Validation of Hardening Rule
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Plasticity: Numerical Modeling: Validation of Hardening Rule
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Plasticity : Summary

» Assuming plastic properties can lead to error in numerical modeling.
» Little has been done to characterize adhesive plastic response

» Arcan fixture was effecting in creating uniform shear with minimal peel stress.

» Adhesives considered here followed von Mises yielding
» notinfluenced by hydrostatic pressure.

» Adhesives in this work tended to follow kinematic hardening
» Isotropic hardening is commonly assumed
» Nonlinear kinematic hardening governed the tough adhesive behavior.
» Nonlinear combined hardening (90% kinematic) described standard adhesive.
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Time dependence (viscoelasticity/viscoplasticity)
Background
« The time-dependent behavior of adhesives is important for durability

« Little work has been done on adhesive ratcheting effects

» Shear response tends to be more important than normal stress
Objectives

The final objective is to build a shear viscoelastic modeling on bonded joints for

ratcheting

» FEA viscoelastic model of bulk adhesives under cyclic normal stress (07/31/2019)

» FEA viscoelastic model of bonded joints under shear (12/31/2020)
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Measuring Adhesive Strain in Bonded Joints
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Rosette Strain Gages

Divide each strain component by 0.13
Fraction of the gage covering the adhesive

Strain in adherend was 2% of the adhesive and neglected

« Y=28-81-&3

1600
1400 G=107.2ksi
5 1200
£1000
800
600
400
200
0
0 5000 10000 15000

Shear Strain (ue)

£

Stress

Strain Gages Covering Adhesive
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10000 Cycle Ratchet Test

EA9696 Scarf Joint

50% UTS, R=0.1, 0.5 Hz
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n @ 1500
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20000 0
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Approach: Time dependence (viscoelasticity/viscoplasticity)

= Comparisons of viscoelastic analytical/ numerical models

Extended Boltzmann From creep tests under load of Numerically unstable;
superposition integral, nonlinear ~ 20%, 50% and 80% UTS, general  Significant time cost.

Boltzmann Superposition integral, From creep tests under load of Linear.
single term 20%, 50% and 80% UTS, tailored

Linear viscoelastic model in From creep tests under load of Linear;
ABAQUS, summation 20%, 50% and 80% UTS, tailored  No permanent strain for recovery
stage.

Nonlinear viscoelastic model in From long term creep test data Cannot describe the response to
ABAQUS under load of 50% and 80% UTS, different percent UTS
general simultaneously.
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Approach: Time dependence (viscoelasticity/viscoplasticity)

Modeling on Bulk resin
EA9696 Creep

test_20% UTS test_50% UTS test_80% UTS

= PRF model = = Prony model = TIN model
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10000 H
8000 -
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PRF

1
— The viscous part in PRF model: é" = {A§™[(m + 1) | }m+1

1 n m
— Taking the log of both sides we have: Iné" = Ina + %ln eer | where a = Am+igm+i(m + 1)m+1
Inec"
, : . 7.0 .
— But, experiment is only linear at 80% UTS 120 110 -100 90 80 7.0 -60 -50 go-40 test80% ui
' ®test 80%_v1
“ 90| gtest80%_t1
In £€7 8 -10.0 test 50%_i4
.3 $ g 11.0 | @test 50%_s1
: -12.0 ®test 50%_j3
L .t * 130 | ®test20%_ b4
« 140 | Otest20%_f2
- - an : etest 20%_g2
-15.0
0 Ing
7 75 8 8.5 9
-5
— Log of a and g should also be linear
Ina .
. But they are not experimental ne -10
-15
— Therefore, PRF is not well suited for EA9696 20
25
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Approach: Time dependence (viscoelasticity/viscoplasticity)

Modeling on Bulk resin

EA9696, 0. 5Hz, R=0.1 . EA9696, 0.025Hz, R=0.1
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Summary & Future Work

— 80% UTS has large experimental variation in creep and cyclic stress

— PRF FEA model cannot describe strain response from applied creep and
cyclic stress

— Damage from cyclic stress appears to depend on both stress magnitude and
rate, but could be due to batch differences

» Perform additional tests at 80% UTS
» Creep, 1 ks and 10 ks
» Cyclic tests, R=0.1, 0.025 — 5 Hz.
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Summary & Future Work

» Another non linear model (NPL)
t m
D(t) = Doe(t_o) : where t, = Ae~%°"
Next step is to input it as a User Subroutine into ABAQUS PRF model.

o test_80% wtest_50%

—ommtest 20%

model compliance
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4.E-06
3.E-06
2.E-06
1.E-06

0.E+00
0 2000 4000 6000 8000 10000

time (s)
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compl

» Enable plasticity in PRF model
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