

Test Method Development for Environmental Durability of Composite Bonded Joints

Dan Adams, Larry DeVries
David Ricsi, Heather McCartin

University of Utah

FAA Technical Monitor: Curt Davies

AMTAS Autumn 2015 Meeting November 4, 2015

Outline

- Update on earlier work: Environmental durability testing of bonded metallic joints
- Current focus: Environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
- Plans for upcoming research

Our Earlier Research Focus: Improving ASTM D3762 Metal Wedge Test

ASTM D 3762: "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Able to asses quality of bond quickly by causing rapid hydration of oxide layers
- Bonded aluminum cantilever beam loaded by forcing a wedge between adherends
- Wedge is retained in specimen
- Assembly placed into test environment
- Crack growth due to environmental exposure measured following prescribed time period

Progress and Status:Improving ASTM D3762 Metal Wedge Test

- Completed study, proposed improvements
- Communicated results with ASTM Committee D14 (Adhesives) at annual meeting (April 2015, Anaheim)
- Initiated ASTM work item to modify standard
- Completed revision of ASTM D3762 standard
- Revised standard under review by collaborators
- Initial balloting of revised ASTM D3762 in 2016
- Arranged for revisions of ASTM D14 standards of interest to aerospace community via ASTM D30 partnership
 - Formation of D14.80.xx Task Groups
 - Task Group meets concurrent with D30
 - Balloting through D14.80 subcommittee and D14 main

Outline

 Update on earlier work: Environmental durability testing of bonded metallic joints

Current focus: Environmental durability test methods for composite bonded joints

- Static wedge test
- Traveling wedge test
- Back-bonded Double Cantilever Beam (DCB) test
- Plans for upcoming research

Why Environmental Durability Tests of Composite Bonded Joints?

"There is currently no known mechanism similar to metal-bond hydration for composites"

- Ensure longer-term environmental durability of composite bonds
- Investigate effects of environmental exposure on performance of bonded composite joints
 - Failure mode: cohesion versus adhesion failure
 - Estimate fracture toughness reduction
- Evaluate effectiveness of surface preparation

Development of a Composite Wedge Test: Additional Complexities

- Variable flexural stiffness of composite adherends
- Environmental crack growth dependent on adherend flexural stiffness
 - Flexural stiffness must be within an acceptable range or...
 - Must tailor wedge thickness for composite adherends or...
 - Must use another quantity to assess durability
- Restrictions in fiber orientation adjacent to bonded interface
- Failure in the composite laminate prior to failure in the adhesive or at the bondline

Use of Fracture Toughness, G_c To Assess Environmental Durability

Consider composite adherends as cantilever beams

- Measured values of crack length, a
- Known value of beam deflection, δ

$$\delta$$
 = t/2 (half of wedge thickness)

Tip deflection of a cantilever beam:

$$\delta = \frac{t}{2} = \frac{P l^3}{3 E_f I} = \frac{T a^3}{3 E_f I}$$

$$T = \frac{E_f b h^3 t}{8 a^3}$$

Strain energy due to bending: $U = \frac{1}{2}T \delta$

Strain energy release rate: $G_c = \frac{dU}{da}$

$$G_c = \frac{3 E_f t^2 h^3}{16 a^4} \left[\frac{1}{(1+0.64 \frac{h}{a})^4} \right]$$

a = crack length

t = wedge thickness

h = adherend thickness

b = specimen width

T = load to deflect tip of beam

 E_f = flexural modulus

 G_c = fracture toughness

Experimental Investigation: Composite Wedge Test Development

- Unidirectional IM7/8552 carbon/epoxy adherends
- AF163-2K film adhesive
- "Ideal Bond": Grit-blast & acetone wipe bond surfaces
- Four adherend thicknesses to produce different E_f
 - 7 ply (~0.05 in.):
 Minimize crack length
 - 13 ply (~0.09 in.):
 Match El of aluminum
 - 20 ply (~0.14 in.):
 Match thickness of aluminum
 - 25 ply (~0.18 in.):
 Maximize crack growth

122°F (50°C) and 95% humidity environment

Effects of Composite Adherend Thickness: Fracture Toughness Values

- 20 ply (0.14") adherend thickness preferred
 - E*I value ~3.6 times that of 1/8" aluminum
 - Greater environmental crack growth

Further sensitivity study on adherend thickness underway

10

Composite Wedge Test Development: Initial Assessment of Bond Durability

Composite Wedge Test Development: Comparison With DCB Test (No Adhesive)

- IM7/8552 unidirectional laminates, 20 ply specimens
- Room temperature/ambient testing
- Comparison of G_c values
 - Wedge test: Gc calculated based on crack length
 - DCB: Gc calculated following ASTM D552

Comparison With DCB Test (No Adhesive): Test Results for IM7/8552

- Good agreement with measured Gc values
 - DCB: Gc calculated following ASTM D552
 - Wedge test: Gc calculated based on crack length
- Similar appearance on fracture surfaces

Composite Wedge Test Development: Current Focus

- Investigate sensitivity of apparent G_c to variations in flexural modulus
 - Moderate thickness variations of IM7/8552 adherends
 - Use of other composite materials for adherends
- Investigate other adhesives
 - 3M AF-555M Film Adhesives
- Comparisons with other proposed test methods

Outline

- Update on earlier work: Environmental durability testing of bonded metallic joints
- Current focus: Environmental durability test methods for composite bonded joints
 - Static wedge test
- Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
- Plans for upcoming research

Traveling Wedge Test for Environmental Durability Assessment

- Longer version of static wedge specimen, potential to assess relatively large bond area
- Wedge driven continuously through adhesive bondline at desired temperature
- Requires moisture saturation of bonded composite specimen prior to testing
 - Use of thin adherends
 - "Back-bonding following conditioning
- Can provide an estimate of G_c with crack length measurements (as for conventional wedge test)
- Limited prior usage/investigation for environmental durability assessment

Traveling Wedge Test Development: Initial Comparison with Static Wedge Test

- 20 ply IM7/8552 adherends, AF163-2K film adhesive, "ideal" bonding condition
- Ambient & 122°F (50°C)/95% humidity moisture conditioning/testing environment
- General agreement in G_c values based on crack lengths

Traveling Wedge Test Development: Effect of Adherend Thickness

- "Ideal" and "Non-ideal" bond conditions
- Tested at room temperature/ambient conditions

Significant differences in G_c values based on different adherend thicknesses

Traveling Wedge Test Results: Back-Bonded Thin Adherends

- Bonding of thin adherends (3 ply)
- Moisture saturated followed by low-temperature, quick cure bond of composite doublers

Tested at elevated temperatures 122°F (50°C)

Traveling Wedge Test Assessment: Current Status

- Further evaluation of adherend thickness effects
 - Interest is use of thin adherends for moisture conditioning
- Development of modified traveling wedge fixturing
 - Reduce friction/binding
 - Permit use of thin adherends
- Comparison of G_c estimates with static wedge, and back-bonded DCB tests

Outline

- Update on earlier work: Environmental durability testing of bonded metallic joints
- Current focus: Environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test

Plans for upcoming research

Environmental Durability Testing: Boeing Back-Bonded DCB Test

- Bond thin adherends with desired surface preparation and adhesive
- Moisture saturate thin bonded composite specimen
- Bond doubler panels to thin specimens to produce full DCB specimen thickness
- Test at elevated temperature conditions

Van Voast, Blohowiak, Osborne and Belcher, "Rapid Test Methods for Adhesives and Adhesion" (SAMPE 2013)

Back-Bonded DCB Test Results:Fracture Toughness Values

- Three types of peel ply: PTFE, Nylon, and VLP
- Three surface preps: Grit blast, hand sand, no treatment.
- Moisture saturated (3 ply adherends), tested at 122°F (50°C)

Environmental Durability Testing of Composites: Plans for Upcoming Research

- Continue development of composite wedge test
 - Variations in flexural modulus
 - Investigate other composite adherends & adhesives
 - Comparisons with other proposed test methods
- Further development of traveling wedge test fixturing for use with thin adherends
- Explore related usages of composite wedge test
 - Thermal cycling
 - Fluid sensitivity

