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Overall objective: Predict if liquid water will accumulate in
core region of ‘pristine’ sandwich structures due strictly
to diffusion
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Created a finite-difference program called MOIST; predictions
based on:
e Fick’s diffusion equations — used to predict through

thickness moisture content resulting from cyclic changes in
external temperature and humidity

e Fourier heat conduction equation — used to predict steady-
state through-thickness temperature profiles

e Clapeyron equations — used to predict dew point of water
vapor in core (if current temperature < dew point,
condensation occurs)

« Certain properties of core region estimated using rule-of-
mixtures
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Overall Conclusions:
« Core humidity levels will increase with time...only question is time
required
- Under realistic service conditions liquid water does not accumulate
within core region of pristine structures due strictly to
diffusion...however
e (For transport aircraft flight profiles) humidity increase implies
water vapor will condense-freeze-thaw-evaporate during ascent-
cruise-descent cycles




A Center of Excellence

M S Synopsis: Numerical UW
4 le-ﬁ_,' Study Funded by Boeing

Transport Aircraft Structures | Y 2




Predicting Moisture

AMTAS piffusion

Advanced Materialsin - Ty pical Result: Constant Temperatures

Transport Aircraft Structures
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Predicting Moisture

Diffusion
Typical Result: Constant
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Although reasonable predictions were obtained
using program MOIST, no experimental
measurements were available to validate
analysis

The potential structural application of sandwich
composites envisioned by Boeing engineers (in
2003) were not pursued, funding was
discontinued, and the UW study ended.
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Objectives:

Measure relative humidity in core region of
a flat sandwich panel exposed to
constant external temperature and
humidity on both sides

Compare measurements with MOIST
predictions
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Sandwich panel internally
instrumented with:

- 2 type K thermocouples

- 2 Ohmic Instruments Model HC-
610 capacitive humidity
Sensors:

= 5-95 %RH
= -40 to 1859F operating range

Test begun on 5 Aug 2008:

e Temperature set @ 40°0C
(104°F)
e Humidity level 55%RH

e Data recorded every 30 mins
(using Labview)

HC-610 Thermeset polymer capacitive humidicy
sensar. Hybrid electronics. Linear output. Range 5
to 95 %RH 2%, Temp. - 40 o 185 °F, Supply
voltage 4.0 - 5.8 VDC

f'(
POF Data POF Man/lnstructons {

www.ohmicinstruments.com/

M
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AMTAS Test Panel FE58

A Center of Excellence

wimcisese Fabrication .‘

Type 410 Nomex honeycomb core
[0/45/90/-45]. Gr/Ep facesheets

Core sized to fit within aluminum frame to insure 1-D,
through-thickness diffusion

Yy

First facesheet bonded
to one side of panel E
using thin-film |
adhesive

Pocket for embedded
humidity sensors and
thermocouples milled
in core
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e Ehyrication

 Leadwires inserted through honeycomb and aluminum
frame

embedded sensors
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e Ehyrication

 Leadwire passage in aluminum frame sealed with epoxy

« Honeycomb ‘caps’
placed over
instrumented sites
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AMTAS Test Panel

e Ehyrication

 Second facesheet bonded to panel using thin-film
adhesive...

...and hot press

17
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- Completed panel mounted in
test chamber; exposure began
on 5 Aug 2008

- Initial measurements (40°C = 104°F):

Panel hum sensor 1: 25.0 %RH
Panel hum sensor 2: 23.4 %RH
(...higher than anticipated in '03...)
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AMM S Humidity data from 7:50am 3 Nov to
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AMM S Humidity data from 7:50am 3 Nov to
Advanced Materials in /:50am 5 Nov
Transport Aircraft Structures (48 hr period, about 3 months after test
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(....worse than watching grass grow...)
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III. Newly-funded JAMS-AMTAS project,
initiated September 2015
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Overall objective: Determine if condense-freeze-thaw-

evaporate cycle within core region cycle is
detrimental...measure:

e Change in bending stiffness, Els (measure using 4-pt bend
test)

e Change in G; (measure using methods being developed by
CMH-17 group)

N
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Overall objective: Determine if condense-freeze-thaw-

evaporate cycle within core region cycle is
detrimental...measure:

e Change in bending stiffness, Els (measure using 4-pt bend
test)

e Change in G; (measure using methods being developed by
CMH-17 group)

Approach (some details still tentative)

e Produce 32, 2in x 12 in specimens (16 autoclave-cured, 16
oven-cured with vacuum bag)
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Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is
detrimental...measure:

e Change in bending stiffness, Els (measure using 4-pt bend
test)

e Change in G; (measure using methods being developed by
CMH-17 group)

Approach (some details still tentative)

e Produce 32, 2in x 12 in specimens (16 autoclave-cured, 16
oven-cured with vacuum bag)

= 8 specimens (4 autoclave, 4 oven): measure as-produced RT
properties

M S Effects of Moisture
d l.A Diffusion in Sandwich
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Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is
detrimental...measure:

e Change in bending stiffness, Els (measure using 4-pt bend
test)

e Change in G; (measure using methods being developed by
CMH-17 group)

Approach (some details still tentative)

e Produce 32, 2in x 12 in specimens (16 autoclave-cured, 16
oven-cured with vacuum bag)
= 8 specimens (4 autoclave, 4 oven): measure as-produced RT
properties
= 8 specimens (4 autoclave, 4 oven): cycle as-produced panels
between RT and
-550C (-679F), then measure RT properties

N
op
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Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is
detrimental...measure:

e Change in bending stiffness, Ele (measure using 4-pt bend
test)

e Change in G; (measure using methods being developed by
CMH-17 group)

Approach (some details still tentative)

e Produce 32, 2in x 12 in specimens (16 autoclave-cured, 16

oven-cured with vacuum bag)

= 8 specimens (4 autoclave, 4 oven): measure as-produced RT
properties

= 8 specimens (4 autoclave, 4 oven): cycle as-produced panels
between RT and
-550C (-679F), then measure RT properties

= 16 specimens (8 autoclave, 8 oven): increase core humidity to
~70%RH (expect to require about 6 mos exposure time)

27
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Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is
detrimental...measure:

e Change in bending stiffness, Els (measure using 4-pt bend
test)

e Change in G; (measure using methods being developed by
CMH-17 group)

Approach (some details still tentative)

e Produce 32, 2in x 12 in specimens (16 autoclave-cured, 16

oven-cured with vacuum bag)

= 8 specimens (4 autoclave, 4 oven): measure as-produced RT
properties

= 8 specimens (4 autoclave, 4 oven): cycle as-produced panels
between RT and
-550C (-679F), then measure RT properties

= 16 specimens (8 autoclave, 8 oven): increase core humidity to
~70%RH (expect to require about 6 mos exposure time)

e 8 specimens (4 autoclave, 4 oven): measure RT propetties (El, G,
Gp)
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Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is
detrimental...measure:

e Change in bending stiffness, Els (measure using 4-pt bend
test)

e Change in G; (measure using methods being developed by
CMH-17 group)

Approach (some details still tentative)

e Produce 32, 2in x 12 in specimens (16 autoclave-cured, 16

oven-cured with vacuum bag)

= 8 specimens (4 autoclave, 4 oven): measure as-produced RT
properties

= 8 specimens (4 autoclave, 4 oven): cycle as-produced panels
between RT and
-550C (-679F), then measure RT properties

= 16 specimens (8 autoclave, 8 oven): increase core humidity to
~70%RH (expect to require about 6 mos exposure time)

e 8 specimens (4 autoclave, 4 oven): measure RT propefties (El, G,
Gp)
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Schematic of experimental arrangement to measure G;
for sandwich panels (under development by CMH-17
working group)
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)s of test setup at NIAR

Effects of Moisture
AIV’J-AS Diffusion in Sandwich
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Photos of test setup at NIAR
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Thank You!

Comments/Questions/Suggestion
S?
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American Autoclave featuring 42 in dia x 96 in working chamber
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Blue-M Model POM-246F Wabash Model G50H-24-

BCLX
L
ab Oven 50-ton hot press

36
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Cincinnati Sub-Zero “Tundra”
Environmental Conditioning Chamber
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Thermotron Model S.12 Temperature Chamber

38
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Instron Model 8511 hydraulic test frame
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Assumptions:

e 'Pristine’ (undamaged) sandwich structure; moisture
ingression solely due to diffusion

e Core = Nomex honeycomb

e Initial moisture content = 0% . This implies:
= Initial moisture content of composite face sheets = 0%
= Initial relative humidity within core region = 0%

R A b a )
Yy,
o S BB
N
Y
ot st N Nt N
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Typical Predicted

AMMS Steady-State
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= 12-ply Gr-Ep facesheets . o
(0.060 in thick) o 0y —— | |
— |
=  Nomex honeycomb core 3 N 1 [
(0.50 in thick) i i
A <
= Step 1: e o i i
Inside temp = 70F 00 ds oz 91 N o1 021 op  os
Outside temp = 85F g o L
Step 2: L -
Inside temp = 65F L .
Outside temp = -65F —
Through-thi-ckn-ess position (in)
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Duration of Step 1 ole Duration of Step2
Example: 120 minutes Example: 380 minutes
Inner Temp Outer Temp Inner Temp Outer Temp
Inner Rel Hum Outer Rel Hum Inner Rel Hum Outer Rel Hum
Temp =90 F Temp =90 F Temp =70 F Temp =-65F
RH = 80% RH = 80% RH = 40% RH = 0%

| Hydrothermal Cycle
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= Step 1:
Duration: 120 minutes
Inside: temp = 90F; RH = 80%
Outside: temp = 90F; RH = 80%
= Step 2:
Duration: 380 minutes
Inside: temp = 70F; RH = 40%
Outside: temp = -65F; RH = 0%
= (Total cycle time = 500 minutes = 8.3 hrs)
= 12-ply Gr-Ep facesheets (0.060 in thick)
= Nomex honeycomb core (0.50 in thick)

= Initial moisture content assumed = 0%
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- = Cyclic Changes in
vanced Materials in
rpert it Tempergture and Humidit

—_—
N
J

N
N
1

i Condensation predicted
| following ~2.2 months

% Change in Weight
o o9
» oo -

o
~
|

=
N
1

o

6 8 10 12
Time (months)

o
N1 N
D
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Typical Analysis

Constant Temperatures,

Non-uniform Humidit

12-ply Gr/Ep
inner and
outer
facesheets

0.50 in
honeycomb
core with
0.20 in cell
size

Outer: T=90F;
RH = 100%
(constant)

Inner: T=90F;
RH = 0%
(constant)

2.50 ~

2.00 A

% Moisture Content
o
(@)

0.50 A

0.00

1.50 -

5 {  Inner Outer

L Facesheet Facesheet |

Honeycomb Core I

20000min=139days| | |

—=— 40000 min =27.8 days| 7[

80000 min =1.9 mo Lo

—— 100000 min=2.3 mo ' 7L '

_4M T T T T T
04 -0.3 -0.2 -0.1 0 0.2 0.3

Through-Thickness Position (in)

0.4

45



A Center of Excellence

AMTAS Temperature

wsaeneensn - yredictions

= Through-thickness temperature distribution

assumed to be governed by the Fourier heat
conduction equation:

00/ ot = heat transfer rate

K_ =thermal conductivity (z -direction)

0 oT
where: A = afpar;
T = temperature

t =time
= Material properties allowed to vary through
thickness; heat conduction equation solved
numerically using finite-differences

A

40
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AMTAS Core Thermal

wtmeensn - Conductivity

K.o.re €Stimated using rule-of-mixture approach

= Volume fractions of air and paper within the core
calculated using hexagonal repeat unit

\@c*‘

Oal

Repeat Unit

47
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AMTAS Core Thermal
wtmeensn - Conductivity
= Given the cell size (¢), paper ribbon
thickness (w), and core thickness (t), it

can be shown that the volume fractions
are given by:

4\ Vo (3¢ -8w)
3c
Sw

C ¢ Vpaper = %

. / TZW

v
T .
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Example: Kcore = (Vair )(Kair) + (Vpaper )(Kpaper)

Honeycomb core with 0.20 in cell size, produced
using 2-mil thick DuPont Type 410 Nomex paper:

Kyaper = 0.715 BTU-in/hr-ft2-°R

K, = 0.166 BTU-in/hr-ft2-°R
Calculated quantities:

Vpaper = 0.027
Vair - 0.973

K.... =0.181 BTU-in/hr-ft2-°R

* Nomex properties: http://www.matweb.com
Air properties: Marks’ Standard Handbook for Mechanical Engineers, 8th Ed (1978)

49
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Thermal
Material Conductivity, K | Thickness
(BTU-in/hr-ft2-°R) | (in)
Graphite/Epoxy 4.0* 0.005 (ply)
Honeycomb 0.181 0.50
Core

* Note: Typical through-thickness K for Gr/Ep is listed;
in-plane K values typically > 400 BTU-in/hr-ft2-°R

50
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= Through-thickness (1-D) diffusion of moisture
assumed to be governed by Fick’s first and
second laws:

Jc dc o [ . Jdc|
=D, — = D, —
P 0z ot GZ_ Zaz_

¢ =rate of diffusion ("moisture flux") : units = mass/(area * time)

¢ = concentration : units = (mass/volume)
D, = diffusivity : units = area/time
z = direction of diffusion : unit = length

t =time

51
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= From an experimental point of view it is easier
to deal with percent moisture by weight (M),

rather than the concentration of moisture (c).
Fick’s first and second laws are restated as:

5 D.poM oM _ a*M

— =D, ——
0 = density, mass/volume

100 oz ot 922

M ="moisture content"

_ (current weight) - (dry weight)

M X 100%

52

(dry weight)




AMTAS Predicting Moisture
wstmeneensn - Diffusion

Temperature dependency of diffusion

coefficient for solids (i.e., ply and core

paper) assumed to follow a Arrhenius-type
relationship:

where: D , E = known material constants

(differ for ply and core
paper)

53
T = absolute temberature
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e [y iffusion

s Temperature dependency of diffusion of
H,0 vapor in air assumed to follow a
power law of the form*:

181 .

Dal.,,=0.03376( TCR) ) m

491.67(°R) secC

3*2I\2Ig)ssman W.]., Atmospheric Environment, Vol
pp 1111-1127 (1998).
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msotiatsmans  EStiMated Core Density

and DIffusivity

pcore = ( alr)(palr) + ( paper)(ppaper)

Dwre _( azr)(Dalr) ( paper)( paper)




dML AS Predicting Moisture

e [y iffusion

The moisture content (M) of any surface
layer in contact with air can be related to
the relative humidity according to (Springer,

1980): o i
o0 )

100

- constant M, = material property

- exponent b = 1 for most materials

- relationship used to define the boundary
condition at all ply interfaces

M=Mu(

56
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Preceding relations allows forward-difference
solution to Fick’s equations; summary

(At all interior ply interfaces) moisture flux
leaving ply kK must equal moisture flux entering

ply k+1 o0n RE
100 )

(Boundary conditions):

(Initial conditions): Initial through-thickness
moisture content assumed uniform (assumed
= zero in '03)

Time step increment of 1 minute

M=Mu(
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Preadicting Moisture

Properties Used in '03

Property Gr/Ep Type 410, 2-mil
(typical values) Nomex
(www.matweb.com)
D, 0.010 in®/sec 0.006 in®/sec
(see note)
E 10300 °R 9000 °R
M, 0.02 0.03
Density, o 0.054 Ibm/in3 0.026 Ibm/in3

Note: Properties reported for Gr/Ep vary widely. For example:
0.005 < D,< 0.040 in4/seC

58




Predicting

AM_TAS Condensation

Advanced Materials in

ansportAirraft sructures. 11@VING calculated the moisture

within core following Step 1,
then

1. Calculate relative humidity within core volume
(based on rule of mixtures approximation)

%RH =M, | M = — Mere

core
pap
V .+M! Vpap
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2. Use Clapeyron equation to estimate saturated
vapor pressure (Ps,,) at Step 1 core temperatures

1 i S ref \
Tci)r p Pref hfg(Tcolr -T f)
sp = Lsyp CXP ref sl

(RT"HT

cor

T = ref temperature (e.g., "¢ =70°F = 529.67°R)
ref ref
P, =saturated vapor pressure at 7'
=0.3632psiat 7" =529.67°R
h, = enthalpy of vaporization at T e
=1054 BTU/Ibm = 820E3 ft - Ibf / Ibmat T'Y =529.67°R

R = gas constant for water vapor =85.76 ft — [bf / [bm — R
60




Predicting
AM.TAS Condensation (cont’d)

Advanced Materials in
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3. Calculate partial pressure of water vapor at
Step 1 temperatures:

Py, = (RH)F,,)
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4. Calculate dew point temperature based on
reference temperature and partial pressure at
step 1 temperatures:

ref
hy T

Tdewpt =

op
N
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5. Finally, condensation is predicted if core
temperatures during step 2 become lower
than calculated dew point temperature

cor

s2 .
T.o <Tje, = Condensation

op
O}



