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Synopsis: Numerical UW 
Study Funded by Boeing 
in 2003

Overall objective: Predict if liquid water will accumulate in 
core region of ‘pristine’ sandwich structures due strictly 
to diffusion

Created a finite-difference program called MOIST; predictions 
based on:
• Fick’s diffusion equations → used to predict through 

thickness moisture content resulting from cyclic changes in 
external temperature and humidity

• Fourier heat conduction equation → used to predict steady-
state through-thickness temperature profiles

• Clapeyron equations → used to predict dew point of water 
vapor in core (if current temperature < dew point, 
condensation occurs) 

• Certain properties of core region estimated using rule-of-
mixtures

Overall Conclusions:
• Core humidity levels will increase with time…only question is 

time required
• Under realistic service conditions liquid water does not 

accumulate within core region of pristine structures due 
strictly to diffusion…however



Predicting Moisture 
Diffusion
Typical Result: Constant Temperatures 
and Humidity
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Predicting Moisture 
Diffusion
Typical Result: Constant 
Temperatures and Humidity (cont’d)
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Numerical UW Study 
Funded by Boeing in 
2003

Although reasonable predictions were obtained 
using program MOIST, no experimental 
measurements were available to validate 
analysis

The potential structural application of sandwich 
composites envisioned by Boeing engineers (in 
2003) were not pursued, funding was 
discontinued, and the UW study ended.
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Experimental Studies at 
UW 
Conducted over 2008-09 

Objectives:
Measure relative humidity in core region of 

a flat sandwich panel exposed to 
constant external temperature and 
humidity on both sides

Compare measurements with MOIST 
predictions
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Sandwich panel internally 
instrumented with:
- 2 type K thermocouples
- 2 Ohmic Instruments Model HC-

610 capacitive humidity 
sensors:
§ 5-95 %RH
§ -40 to 185ºF operating range

Test begun on 5 Aug 2008:

● Temperature set @ 40ºC
(104ºF)

● Humidity level 55%RH
● Data recorded every 30 mins

(using Labview)
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www.ohmicinstruments.com/



Test Panel 
Fabrication

• Type 410 Nomex honeycomb core 
• [0/45/90/-45]s Gr/Ep facesheets
• Core sized to fit within aluminum frame to insure 1-D, 

through-thickness diffusion
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• First facesheet bonded 
to one side of panel 
using thin-film 
adhesive

• Pocket for embedded 
humidity sensors and 
thermocouples milled 
in core



Test Panel 
Fabrication

• Leadwires inserted through honeycomb and aluminum 
frame
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• Initial installation of 
embedded sensors



Test Panel 
Fabrication

• Leadwire passage in aluminum frame sealed with epoxy
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• Honeycomb ‘caps’ 
placed over 
instrumented sites



Test Panel 
Fabrication

• Second facesheet bonded to panel using thin-film 
adhesive…
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…and hot press



Test Panel 
Fabrication

- Completed panel mounted in  
test chamber; exposure began 
on 5 Aug 2008

- Initial measurements (40ºC = 104ºF):
Panel hum sensor 1: 25.0 %RH
Panel hum sensor 2: 23.4 %RH
(…higher than anticipated in ’03…)
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Typical Measurements
Humidity data from 7:50am 3 Nov to 
7:50am 5 Nov
(48 hr period, about 3 months after test 
initiated)
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Measurement vs
Prediction
Obtained between 5 Aug ‘08 to 4 
Aug ‘09 = 365 days
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Effects of Moisture 
Diffusion in Sandwich 
Composites

Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is 
detrimental…measure:
• Change in bending stiffness, EIeff (measure using 4-pt bend 

test)
• Change in GI (measure using methods being developed by 

CMH-17 group)

23



Effects of Moisture 
Diffusion in Sandwich 
Composites

Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is 
detrimental…measure:
• Change in bending stiffness, EIeff (measure using 4-pt bend 

test)
• Change in GI (measure using methods being developed by 

CMH-17 group)
Approach (some details still tentative)

• Produce 32, 2 in x 12 in specimens (16 autoclave-cured, 16 
oven-cured with vacuum bag)

24



Effects of Moisture 
Diffusion in Sandwich 
Composites

Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is 
detrimental…measure:
• Change in bending stiffness, EIeff (measure using 4-pt bend 

test)
• Change in GI (measure using methods being developed by 

CMH-17 group)
Approach (some details still tentative)

• Produce 32, 2 in x 12 in specimens (16 autoclave-cured, 16 
oven-cured with vacuum bag)
§ 8 specimens (4 autoclave, 4 oven): measure as-produced RT 

properties 

25



Effects of Moisture 
Diffusion in Sandwich 
Composites

Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is 
detrimental…measure:
• Change in bending stiffness, EIeff (measure using 4-pt bend 

test)
• Change in GI (measure using methods being developed by 

CMH-17 group)
Approach (some details still tentative)

• Produce 32, 2 in x 12 in specimens (16 autoclave-cured, 16 
oven-cured with vacuum bag)
§ 8 specimens (4 autoclave, 4 oven): measure as-produced RT 

properties 
§ 8 specimens (4 autoclave, 4 oven): cycle as-produced panels 

between RT and 
-55ºC (-67ºF), then measure RT properties

26



Effects of Moisture 
Diffusion in Sandwich 
Composites

Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is 
detrimental…measure:
• Change in bending stiffness, EIeff (measure using 4-pt bend 

test)
• Change in GI (measure using methods being developed by 

CMH-17 group)
Approach (some details still tentative)

• Produce 32, 2 in x 12 in specimens (16 autoclave-cured, 16 
oven-cured with vacuum bag)
§ 8 specimens (4 autoclave, 4 oven): measure as-produced RT 

properties 
§ 8 specimens (4 autoclave, 4 oven): cycle as-produced panels 

between RT and 
-55ºC (-67ºF), then measure RT properties

§ 16 specimens (8 autoclave, 8 oven): increase core humidity to 
~70%RH (expect to require about 6 mos exposure time)

27



Effects of Moisture 
Diffusion in Sandwich 
Composites

Overall objective: Determine if condense-freeze-thaw-
evaporate cycle within core region cycle is 
detrimental…measure:
• Change in bending stiffness, EIeff (measure using 4-pt bend 

test)
• Change in GI (measure using methods being developed by 

CMH-17 group)
Approach (some details still tentative)

• Produce 32, 2 in x 12 in specimens (16 autoclave-cured, 16 
oven-cured with vacuum bag)
§ 8 specimens (4 autoclave, 4 oven): measure as-produced RT 

properties 
§ 8 specimens (4 autoclave, 4 oven): cycle as-produced panels 

between RT and 
-55ºC (-67ºF), then measure RT properties

§ 16 specimens (8 autoclave, 8 oven): increase core humidity to 
~70%RH (expect to require about 6 mos exposure time)
• 8 specimens (4 autoclave, 4 oven): measure RT properties (EIeff,GI, 

GII)
28



Effects of Moisture 
Diffusion in Sandwich 
Composites

Overall objective: Determine if condense-freeze-thaw-
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Effects of Moisture 
Diffusion in Sandwich 
Composites

Schematic of experimental arrangement to measure GI
for sandwich panels (under development by CMH-17 

working group)
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Thank You!

Comments/Questions/Suggestion
s?



Backup Slides
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American Autoclave featuring 42 in dia x 96 in working chamber
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Wabash Model G50H-24-
BCLX 

50-ton hot press

Blue-M Model POM-246F 
Lab Oven



Effects of Moisture 
Diffusion in Sandwich 
Composites

37

Cincinnati Sub-Zero “Tundra” 
Environmental Conditioning Chamber
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Thermotron Model S.12 Temperature Chamber
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Instron Model 8511 hydraulic test frame



Synopsis: Numerical UW 
Study Funded by Boeing 
in 2003

Assumptions:
• ‘Pristine’ (undamaged) sandwich structure; moisture 

ingression solely due to diffusion
• Core = Nomex honeycomb 
• Initial moisture content = 0% .  This implies:

§ Initial moisture content of composite face sheets = 0%
§ Initial relative humidity within core region = 0%

40



Typical Predicted 
Steady-State 
Temperature Profiles
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§ 12-ply Gr-Ep facesheets
(0.060 in thick)

§ Nomex honeycomb core
(0.50 in thick)

§ Step 1:
Inside temp = 70F
Outside temp = 85F

Step 2:
Inside temp = 65F
Outside temp = -65F
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Definition of a Cycle

42



Typical Analysis
Cyclic Changes in 
Temperature and Humidity

§ Step 1:
Duration: 120 minutes
Inside:    temp = 90F; RH = 80%
Outside:  temp = 90F; RH = 80%

§ Step 2:
Duration: 380 minutes
Inside:     temp = 70F; RH = 40%
Outside:   temp = -65F; RH = 0% 

§ (Total cycle time = 500 minutes = 8.3 hrs)
§ 12-ply Gr-Ep facesheets (0.060 in thick)
§ Nomex honeycomb core (0.50 in thick)
§ Initial moisture content assumed = 0%
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Typical Analysis
Cyclic Changes in 
Temperature and Humidity
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Typical Analysis
Constant Temperatures, 
Non-uniform Humidity
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Temperature 
predictions
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§ Through-thickness temperature distribution 
assumed to be governed by the Fourier heat 
conduction equation:
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§ Material properties allowed to vary through 
thickness; heat conduction equation solved 
numerically using finite-differences



Core Thermal 
Conductivity

Repeat Unit

c

c3

§ Kcore estimated using rule-of-mixture approach
§ Volume fractions of air and paper within the core 

calculated using hexagonal repeat unit
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Core Thermal 
Conductivity
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§ Given the cell size (c), paper ribbon 
thickness (w), and core thickness (t), it 
can be shown that the volume fractions 
are given by:
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Core Thermal 
Conductivity

))(())(( paperpaperairaircore KVKVK +=Example: 
Honeycomb core with 0.20 in cell size, produced 
using 2-mil thick DuPont Type 410 Nomex paper:

Kpaper = 0.715 BTU-in/hr-ft²-°R 
Kair = 0.166 BTU-in/hr-ft²-°R  

Calculated quantities:
Vpaper = 0.027
Vair = 0.973

Kcore =0.181 BTU-in/hr-ft²-°R
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* Nomex properties: http://www.matweb.com 
Air properties: Marks’ Standard Handbook for Mechanical Engineers, 8th Ed (1978)



Typical Properties

Material
Thermal 
Conductivity, K
(BTU-in/hr-ft2-°R)

Thickness
(in)

Graphite/Epoxy 4.0* 0.005 (ply)

Honeycomb 
Core

0.181 0.50

50

* Note: Typical through-thickness K for Gr/Ep is listed;  
in-plane K values typically > 400 BTU-in/hr-ft2-ºR



Predicting Moisture 
Diffusion

§ Through-thickness (1-D) diffusion of moisture 
assumed to be governed by Fick’s first and 
second laws:
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Predicting Moisture 
Diffusion
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§ From an experimental point of view it is easier 
to deal with percent moisture by weight (M), 
rather than the concentration of moisture (c).  
Fick’s first and second laws are restated as:
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Predicting Moisture 
Diffusion

⎟
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§ Temperature dependency of diffusion 
coefficient for solids (i.e., ply and core 
paper) assumed to follow a Arrhenius-type 
relationship:

where: Do, E = known material constants
(differ for ply and core 

paper)
T = absolute temperature
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Predicting Moisture 
Diffusion
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§ Temperature dependency of diffusion of 
H20 vapor in air assumed to follow a 
power law of the form*: 

* Massman, W.J., Atmospheric Environment, Vol 
32 (6),  

pp 1111-1127 (1998). 
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Predicting Moisture 
Diffusion 
Estimated Core Density 
and Diffusivity
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Predicting Moisture 
Diffusion

b

u
RHMM ⎟
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The moisture content (M) of any surface 
layer in contact with air can be related to 
the relative humidity according to (Springer, 
1980):

- constant Mu = material property   
- exponent b = 1 for most materials
- relationship used to define the boundary 

condition at all ply interfaces
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Predicting Moisture 
Diffusion

⎟
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Preceding relations allows forward-difference 
solution to Fick’s equations; summary

• (At all interior ply interfaces) moisture flux 
leaving ply k must equal moisture flux entering 
ply k+1

• (Boundary conditions):
• (Initial conditions): Initial through-thickness 

moisture content assumed uniform (assumed 
= zero in ‘03)

• Time step increment of 1 minute
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Predicting Moisture 
Diffusion
Properties Used in ‘03

Property Gr/Ep
(typical values)

Type 410, 2-mil 
Nomex

(www.matweb.com)
Do 0.010 in2/sec 

(see note)
0.006 in2/sec

E 10300 °R 9000 °R

Mu 0.02 0.03

Density, ρ 0.054 lbm/in3 0.026 lbm/in3
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Note: Properties reported for Gr/Ep vary widely.  For example:
0.005 < Do< 0.040 in2/sec



Predicting 
Condensation
Having calculated the moisture 
content and temperature 
within core following Step 1, 
then

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
==

pap
pap
uair

corecore
ucore VMV

MMMRH /%

1.  Calculate relative humidity within core volume
(based on rule of mixtures approximation)
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Predicting 
Condensation (cont’d)

1s
corT

2. Use Clapeyron equation to estimate saturated 
vapor pressure (Psvp) at Step 1 core temperatures 
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Predicting 
Condensation (cont’d)

3. Calculate partial pressure of water vapor at 
Step 1 temperatures:

61

))((% svppp PRHP =



Predicting 
Condensation (cont’d)
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4. Calculate dew point temperature based on 
reference temperature and partial pressure at 
step 1 temperatures:
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Predicting 
Condensation (cont’d)

onCondensati 2 ⇒< dewpt
s
cor TT

5. Finally, condensation is predicted if core 
temperatures during step 2 become lower 
than calculated dew point temperature
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