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Effects of Moisture Diffusion 
in Sandwich Composites

Motivation and Key Issues: 

• In-service bond failures between composite facesheets and honeycomb 
cores have been reported

(Photos courtesy of Ronald Krueger, National Institute of Aerospace 
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• Disbond initiation and growth is not completely understood, but is 

thought to occur due to combination of factors:
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Configuration at ground level
Po = 100 kPa = 14.7 psi

Configuration at 35,000 ft
Po = 24 kPa = 3.5 psi
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Motivation and Key Issues: 
• Disbond initiation and growth is not completely understood, 

but is thought to occur due to combination of factors: 

• Pressure differences between inside and outside of unvented 
honeycomb structures (Ground-Air-Ground or ‘GAG’ pressure 
cycles)

• Excessive in-plane (design) loads
• Water ingression into core, followed by freeze-thaw cycles

• Water ingression most commonly attributed to wicking of liquidous
water through microcracks, along fiber/matrix interface, and/or 
through improper edge closeouts (all accentuated by GAG pressure 
cycles)

• Water ingression may also occur simply due to diffusion of water 
molecules through (undamaged) facesheets



Effects of Moisture Diffusion 
in Sandwich Composites

Motivation and Key Issues: 
• Significant moisture transport via diffusion typically requires  

months or years, depending on:

• Temperature
• Thickness and material properties
• External humidity level



Effects of Moisture Diffusion 
in Sandwich Composites

Motivation and Key Issues: 

Moisture diffusion in solid 48-ply 
Gr-Ep laminate; 160ºF, 85%RH
(W. Seneviratne and 
J. Tomblin, JAMS 2012)



Effects of Moisture Diffusion 
in Sandwich Composites

Motivation and Key Issues: 

Moisture diffusion in 
honeycomb sandwich panels: 
-12-ply Gr-Ep facesheets
- 0.5 in Nomex core
- 90ºF, 80%RH
(Tuttle, AMTAS 2009)
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Effects of Moisture Diffusion 
in Sandwich Composites

Implication: 
Since sandwich structures are exposed to low external temperatures 
during flight (-50ºC), a condense-freeze-thaw-evaporate cycle will occur 
as internal humidity increases within the core volume of a sandwich 
composite, even if no mechanical damage of the facesheet has occurred 

Objective of this study: 
Determine if the condense-freeze-thaw-evaporate cycle is detrimental by 
monitoring room-temperature interfacial fracture toughness, Gc, 
associated with facesheet disbonding for four specimen types:

Type A:  As produced, “dry” specimens 
Type B: “Dry” specimens exposed to 300 thermal cycles from RT to -50ºC
Type C: “Humid” specimens, with internal core humidity ~80%RH 
Type D: “Humid” specimens exposed to 700 thermal cycles from RT to -50ºC
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• UW Principal Investigator and Researchers
• Mark Tuttle (PI), Shuyu ‘Frank’ Xia  (MSME), William Smoot 
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• Study Initiated in September 2015



Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• Sandwich panels with 4-ply woven facesheets and [45/0/0/45]T

stacking sequence:

Type
Facesheet
Core
Adhesive

Manufacturer/Material Designation
Cytec T300/970 3k plain weave fabric

Hexcel HRH-10 – 1/8 – 3.0 (0.50 in thick)
3M Scotch-Weld Structural Film AF 163-2K 



Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• Facesheets produced using an autoclave: 



Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• The cured facesheets and Nomex core were machined to size and 

stored for 2 months at 50ºC (122ºF) at 8% RH in a humidity 
chamber, to insure components were as “dry” as possible



Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• Four parent sandwich panels were then produced using dried 

facesheets and core, using secondary bonding and a hot press 
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in Sandwich Composites

Technical Approach
• Also fabricated instrumented “witness” panels with Ohmic

Instruments Model HC-610 capacitive humidity sensors to monitor 
core humidity levels



Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• Six tests specimens were machined from the four “parent” panels 

(24 test specimens in total)
• Specimens produced from each panel were used for each Type, to 

avoid any potential manufacturing bias 

Type
A (as-produced) 1-1 2-2 3-3 4-4 1-5 2-6

B (thermally cycled) 2-1 3-2 4-3 1-4 2-5 3-6
C (humid) 3-1 4-2 1-3 2-4 3-5 4-6

D (humid&thermally Cycled) 4-1 1-2 2-3 3-4 4-5 1-6

Specimen Number



Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• Three witness panels and all Type C and D specimens were placed 

in the humidity chamber at 65ºC (150ºF) and 90%RH.  Core 
humidity levels increased to about 80% in one month
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Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• All thermally-cycled specimens (Types B and D) were individually 

vacuum bagged (to insure constant moisture content in core volume) 
and subjected to 2-hr thermal cycles from 30ºC ↔ -50ºC 
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Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• The interfacial fracture toughness, Gc, was measured in accordance 

with a (draft) single-cantilever-beam (SCB) test standard being 
developed by Dan Adams, Waruna Seneviratne, and other members 
of a CMH-17 working group
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Effects of Moisture Diffusion 
in Sandwich Composites

Technical Approach
• A typical test involves 

six load cycles

• Crack length is 
measured after 
each cycle

• Gc can be calculated 
using data collected 
during any one of the 
six cycles (data from 
cycle 1 is normally 
discarded)
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Type A – As Produced Type B – Thermally Cycled 

  
Type C - Humid Type D – Humid and Thermally Cycled 
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Effects of Moisture Diffusion 
in Sandwich Composites

Condition Ave	Gc	(J/m
2) StdDev	Gc	(J/m

2)

Average	Gc,	
Normalized	
to	Type	A

Type	A 1508 213 1.00
Type	B 1410 214 0.94
Type	C 1440 142 0.95
Type	D 1368 198 0.91



Effects of Moisture Diffusion 
in Sandwich Composites

Conclusions

• Environmental factors (i.e., thermal cycling and/or elevated 
humidity levels) have a modest but measureable impact on 
interfacial fracture toughness, Gc, associated with facesheet
disbonding in sandwich composites

• The most aggressive environmental conditions considered during 
this study (humid specimens exposed to 700 thermal cycles from 
RT to -50ºC) resulted in about a 10% reduction in Gc. 



Effects of Moisture Diffusion 
in Sandwich Composites

A Look Ahead

• Expand Test Matrix:
• Kevlar honeycomb core
• Different Nomex core densities (e.g., 8 lb/ft3) 
• Thinner (3-ply?) and thicker (8-ply?) facesheets

• Formally participate in CMH-17 sandwich disbond round-robin 
study
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in Sandwich Composites

Thank You!

Questions, Comments, 
Suggestions?
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