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SHM System for

Composite Structures
: =

e Motivation:

Impact damage in composite structures followed by
continued cyclic loading can lead to structural failure
and an SHM system to monitor these will be useful.

 Objective:
Develop an SHM system to detect and size impact

damage and predict remaining lifetime of a laminated
composite component.

 Approach:

Modally-selective Lamb wave sensors coupled with
damage growth laws and probabilistic lifetime
calculations
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Structural Health Monitoring
and Lifetime Prediction
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SHM of Composite Structures

Monitor unanticipated events: -
A laminated composite aircraft panel suffers impact damage. _—
Identify location of damage:
Impact is identified by on-board PZT and FBG ultrasonic SHM R |

sensors which locate the point of impact.

Image damaged region: Z0NES  zONE4

Full-field NDI tool (Acoustocam) images the damage region (matrix
cracks...delaminations).

Monitor damage growth:

Modally-selective SHM sensors are installed around the damage
region to monitor further damage growth as the panel is subject to
cyclic loading.

Predict damage growth:

Measured damage size is used in a probabilistic fatigue damage
model which estimates the remaining lifetime of the structure.
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SHM of Composite Structures

Monitor unanticipated events: -
A laminated composite aircraft panel suffers impact damage. _—
Identify location of damage:
Impact is identified by on-board PZT and FBG ultrasonic SHM i
sensors which locate the point of impact.
Image damaged region: ZONES  7ONE4

Full-field NDI tool (Acoustocam) images the damage region (matrix
cracks...delaminations).

Monitor damage growth:

Modally-selective SHM sensors are installed around the damage
region to monitor further damage growth as the panel is
subject to cyclic loading.

Predict damage growth:

Measured damage size is used in a probabilistic fatigue damage
model which estimates the remaining lifetime of the structure.
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* FBG sensor network

* always ready

» multiplexable

« adaptive to low frequency noise
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SHM of Composite Structures

Monitor unanticipated events: -
A laminated composite aircraft panel suffers impact damage. _—
Identify location of damage:
Impact is identified by on-board PZT and FBG ultrasonic SHM .

sensors which locate the point of impact.

Image damaged region: Z0NE3  ZONE4

Full-field NDI tool (Acoustocam) images the damage region (matrix
cracks...delaminations).

Monitor damage growth:

Modally-selective SHM sensors are installed around the damage
region to monitor further damage growth as the panel is
subject to cyclic loading.

Predict damage growth:

Measured damage size is used in a probabilistic fatigue damage
model which estimates the remaining lifetime of the structure.
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Image Impact Damage
Region

e CCD array with piezo-sensitive coating

* Real time subsurface imaging —video
rates

e Large area — 1-1.5 inch square

e High resolution — 120x120 pixels
 Non-invasive

* Multiple applications

* Faster and cheaper than current
technologies

Delaminations in Woven composite panel
Manufactured by Imperium Inc Northwestern University
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SHM of Composite Structures

Monitor unanticipated events: -
A laminated composite aircraft panel suffers impact damage. _—
Identify location of damage:
Impact is identified by on-board PZT and FBG ultrasonic SHM .

sensors which locate the point of impact.

Image damaged region: ZONES  7ONE4

Full-field NDI tool (Acoustocam) images the damage region (matrix
cracks...delaminations).

Monitor damage growth:

Modally-selective SHM sensors are installed around the damage
region to monitor further damage growth as the panel is
subject to cyclic loading.

Predict damage growth:

Measured damage size is used in a probabilistic fatigue damage
model which estimates the remaining lifetime of the structure.
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Sensor development

Build a complete SSHM prototype that can
perform Structure and Sensor Health Monitoring.

Structural Health Monitoring: Excitation and
reception of a single mode

Investigation of various transducer configurations
to optimize the SHM setup

— Ultrasonic wave generation transducers
— Ultrasonic wave reception transducers

Sensor Health Monitoring
— Understand the theory
— Build an initial prototype

Northwestern University
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SHM: Mode-Selective
Lamb-Wave Sensors for defect sizing
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Mode Propagation

(minimal dispersion)
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Array Design Configurations

- ———

R

low-pass
i filter

Generation Transducer array

» Generator array is best connected in parallel
* Receiver array is best connected in series.

Receiver Transducer array
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Magnitude (volts/strain)
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Energy harvesting circuit to power
generating array
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Important parts of the above circuit are C_actuator
1. Energy harvesting actuator circuitry (Q_sen and C_sen) =
2. Generation transducer array (Q_actuator and C_actuator) Comparison of signals between RF generator and EHA (a)

: : Excitation signal (b) Receiving signal
3. Receiver transducer array (not shown) Northwestern University

The Joint Advanced Materials and Structures Center of Excellence 16



Transducer Health Monitoring

Q &
Free transducer C — — 38 X
free
V t
d..T, d,T, d.TI
Clamped transducer 2 = i 6‘;3[1—% 31T1 + 32T2 + 33T3]=CBONDED
\Z t Eses; Esey  Eseg

Variation of capacitance is due to

eChange in the area of the transducer (A,) ( in this case it is assumed that the area is
constant)

eChange in the stresses associated with the transducer and in turn relates to the
change in the dielectric coefficient of the transducer

eChange in the thickness of the transducer

Finite element modeling using ANSYS is performed to understand the above changes

Northwestern University
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Stress Variation Study

Variation of Capacitance as a function of Variation of Capacitance as a function of

transducers length host structure thickness
Host structure thickness: 5.1mm Length of the transducer: 24dmm

Width of the transducer: 5mm Width of the transducer: Smm

Thickness of the transducer: 1.02mm Thickness of the transducer: 1.02mm

The in-plane stresses are the primary reason for the change in the capacitance. For a transducer
completely embedded inside a rigid structure the maximum change in capacitance is about 60%.
For a transducer surface bonded the maximum change is about 21%

Northwestern University

The Joint Advanced Materials and Structures Center of Excellence 18




Relative dis

x 107

Displacement Y {m)

0 02 0.4 06 08 1
L/Lmax

placement variation

Displacement Y (m)

0 02 0.4 06 08 1
L/Lmax

Figure Variation of displacement in the Y direction (a) Bottom layer of the transducer (b) top layer

of the transducer

Host structure thickness: 5.1mm, Width of the transducer: 5mm, Thickness of the transducer: 1.02mm

The change in thickness between the top and bottom layers of the transducer is 20nm. Such
a small change does not significantly alter the capacitance. Hence capacitance change is

primarily a function of in-plane stresses

Nor
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Sensor Health Monitoring - Prototype
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Figure. Transducer health monitoring based on a commercially available transducer (a) Microcontroller
indicating “G” for a good transducer (b) Microcontroller indicating “B” for bonding issues with a transducer. The
change in capacitance is 18%.
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Delamination Detection

(simulated at mid-plane)
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Delamination Signature
(decrease Iin group velocity )
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Delamination Signature
Time-Delay
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Impact Delaminations

Material:

Toray T800 BMS 8-276
manufactured by:
NIAR, Wichita, KS

—> cross-ply [0/90]4s
—> carbon-epoxy composite
- 4.6mm thick (24 plies)

Impact:

- precisely directed
- variable (via m or h)

Enerqy=mgh

- ball radius: 1in
100g

<

S

=
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Impact Delaminations
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SHM of Composite Structures

Monitor unanticipated events: -
A laminated composite aircraft panel suffers impact damage. _—
Identify location of damage:
Impact is identified by on-board PZT and FBG ultrasonic SHM .

sensors which locate the point of impact.

Image damaged region: ZONES  7ONE4

Full-field NDI tool (Acoustocam) images the damage region (matrix
cracks...delaminations).

Monitor damage growth:

Modally-selective SHM sensors are installed around the damage
region to monitor further damage growth as the panel is
subject to cyclic loading.

Predict damage growth:

Measured damage size is used in a probabilistic fatigue damage
model which estimates the remaining lifetime of the structure.
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Damage Prognosis
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1) composite part suffers an impact and 81
monitored with sensors; 2 6t
. _ _ |
i) velocity changes =» time-delay (T) ; g ,0 dﬁp/
I © L
convert T into damage level (S) 2 ,[ & ¢ 220 impact
= 0 [ > 28J impact
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)
3 4
coefficients a,b, and m 5 ,,«"'"
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Damage Prognosis

~ R

Evaluated Failure Analysis Software for Composites:

Alpha STAR’s Generalized Optimization and Analysis (GENOA)
software* is designed to evaluate the life, residual strength and damage/failure
propagation in advanced materials and structures. GENOA performs progressive
failure analysis (PFA) using finite element analysis (FEA) software (including
commercial codes), full hierarchical modeling and materials engineering to
determine:

- Material properties and property degradation
- Damage and fracture initiation/progression
- Failure mechanism contribution

- Effects of manufacturing anomalies, including in-service damage, and
environment including moisture and temperature

- Component life and final failure load

*ascgenoa.com

Northwestern University
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Damage Prognosis

Fatigue analysis:
load amplitude =
1e3 N, R=0.1

Percentage Damage Yolume (%)

The composite laminate
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Work In Progress

Integrate the SHM sensor data with the damage growth software to

form closed-loop prognostics for life-time assessment.

Probability of PROGNOSTICS
detection > Current
Measured mm m)p>| state of structure
state of structure r Damage growth
I characteristics

Structural Health Failure Model Structural Model
Monitoring System

'l I
DIAGNOSTICS {Probabilistic prognosis of damage evqutionJ

(damage vs time or cycles)

low

Failure probability
within preset interval

high

[ Inspection and Repairs

at maintenance facility ] N D I
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A Look Forward

e Benefit to Aviation
— Maintenance calls based on need
— Cost saving
— Reduced downtime

e Future needs

— Efficient wireless sensor systems for autonomous
data acquisition and data management

— Damage growth laws
— Integration of diagnostics and prognostics

Northwestern University
The Joint Advanced Materials and Structures Center of Excellence
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