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Impact Damage Formation on Composite Aircraft Structures 
•  Motivation and Key Issues  

•  impacts are ongoing and major source of creating damage 
•  high energy blunt impact damage (BID) of key interest 

•  involves large contact area 
•  damage created can exist with little/no exterior visibility 

•  Sources of Interest:  those that affect wide area or multiple 
structural elements 

•  Needs: (i) establish clear understanding of damage formation 
from blunt sources vs. visibility, (ii) prediction capability 

Hail Ice Impact 
•  upward & forward facing 

surfaces 
•  low mass, high velocity 
•  threat: 38-61 mm diam. 

ice at in-flight speed 

Ground Vehicles &  
Service Equipment  
•  side & lower facing 

surfaces 
•  high mass, low velocity 
•  wide area contact 
•  damage at locations 

away from impact likely 
•  threats: 

 - belt loader ~3,000 kg 
 - cargo loader ~15,000 kg 
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Overall Program Objectives 
•  Source Identification: characterize blunt impact threats – relate to operations 
•  Damage: understand BID formation and visual detectability 

•  determine key failure modes, driving phenomena, governing parameters 
•  how damage and visibility affected by bluntness/contact-area 
•  relate visibility to damage severity for various blunt impact sources 
•  what conditions relate to development of significant internal damage with minimal or no 

exterior visual detectability? 
•  identify & predict failure thresholds (useful for design) 
•  provide guidance on the inspection and detection of BID to internal structural members 

•  Test: develop testing methodologies 
•  defining stiffness and inertial BCs to represent complete structure 
•  establish data for supporting modeling capability development 

•  Prediction: establish new modeling capabilities validated by tests 
•  key failure modes, focusing on those not easily predicted by FEA 
•  guidance on predicting damage visibility – dent and/or visible surface crack 

•  Dissemination: communicating results to industry and collaboration on relevant 
problems/projects via workshops and meetings 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Large	
  Specimen	
  Blunt	
  Impact	
  Tests	
  
•  series	
  of	
  large	
  specimens	
  (ID:	
  	
  Frame03,	
  
Frame04-­‐1,	
  	
  Frame04-­‐2)	
  tested	
  

•  Frame03	
  (composite	
  shear	
  ?es):	
  	
  	
  
–  internal	
  damage	
  to	
  frames	
  and	
  shear	
  ?es	
  
–  no	
  skin	
  cracking	
  /	
  no	
  visibility	
  

•  Frame04-­‐2	
  (7075	
  Al	
  shear	
  ?es):	
  	
  
–  direct	
  shearing	
  of	
  frames	
  at	
  shear	
  ?es	
  
–  light	
  skin	
  cracking	
  –	
  due	
  to	
  overdriven	
  test	
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GSE High Energy Blunt Impact 
Previous Results Summary I 

04-­‐2	
  
03	
  

Frame	
  
Failure	
  
Near	
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Frame03 Test 
Video 

7075	
  Shear	
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Post-Test View of Specimen Frame03 
  -  No Exterior-Visible Damage  
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GSE High Energy Impact – Previous Results Summary II 

Adjacent shear ties fail along 
fastener line on loaded frames

9

Ctr. shear 
ties crushed

Ctr. shear 
ties 

crushed Adjacent shear tie 
failure along fastener 
line (Frames #2 and #4)

Adjacent shear tie failure 
along fastener line (Frame #3)

Good correlation
• initial load drop
• failure mode sequence
• final failure 

Issues with
• initial & intermediate 

failure displacements

Frame failure 
near boundaries

Frame failure 
near boundaries

Modeling	
  Results	
  as	
  of	
  March	
  2013	
  
•  predicts	
  failure	
  modes	
  from	
  in-­‐plane	
  (ply)	
  stresses,	
  but	
  not	
  interlaminar	
  failures	
  

–  ini?al	
  mode:	
  shear	
  ?e	
  delamina?on	
  occurs	
  1st	
  –	
  affects	
  subsequent	
  history	
  
•  frame	
  failure	
  mode	
  predicted	
  

For 2013-2014:  
interlaminar 
failure prediction 
capability 

Shear Tie 
Delamination 
Not Predicted 



•  small-­‐scale	
  failures	
  
affect	
  large-­‐scale	
  
overall	
  behavior	
  

•  element-­‐level	
  tests	
  
conducted	
  to	
  
support	
  accurate	
  	
  
model	
  development	
  
–  key	
  failure	
  modes	
  
–  ini?a?on	
  &	
  
growth	
  

– final	
  failure	
  
•  no	
  “tuning”	
  of	
  
material	
  proper?es	
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Building Modeling Capability: Element-Level Tests 
Delam.,	
  Buckling,	
  Bending	
  

Bolt	
  Line	
  Bending	
  

Skin	
  Surface	
  Cracking	
  

Underside View of Large Specimen Frame03 

Also: 
•  Frame 

Bending  
•  Frame 

Torsion 
•  Stringer 

Penetrate 
by Frame 
Indentation 

•  Stringer 
Delam. 
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Shear Tie Coupon Compression 
Shear tie coupon cut from full shear tie and loaded under compression. 

•  bolted to base (skin side), simple V-groove at top BC 
Curved geometry 
delaminates due to 
interlaminar tension 
under opening moment. 
 

Shear tie coupon 
modeled via 
•  4-6 layers of 
continuum shell 
elements (SC8R)  

•  cohesive surface 
interactions applied 
between layers 

• Hill criterion for 3D 
failure (intraply fiber 
under σ13 & σ23) 

Initial Geometry 
Before Loading 

Delamination 
Due to 

Opening 
Moment 

Corner 
Failure – 
Shear Tie 
Straightens 

Bending 
Failure 

Following 
Buckling 
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Shear Tie Coupon Compression Results 

4-Layer Model 
Animation 

•  more accuracy with 
increasing number of 
continuum shells through 
thickness 
•  4 layers:  3 plies/group 
•  6 layers:  2 plies/group 

– predicts initial delam. 
onset & final failure well 

•  higher cost – more 
elements and more 
cohesive surface layers 
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Large Panel Modeling 
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•  accurate modeling capability 
established via element-level test 

•  modeling approach applied to large 
panel 

•  results capture initial response of 
shear ties (delam.) well 

•  final failure not yet reached due to 
stability/cost issues (work in 
progress) 

Full Panel 
Simulation 

Layered Shear 
Ties - View 1 
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Shear Tie Failure 

Elem. Distortion 
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Skin Cracking Under Bumper Contact Zone 
•  stringer element tests to excite just-visible failure modes by bumper indentation 
•  define FEA criteria indicating visibility – for fabric outer layer, vs. unidirectional 

Surface-
visible Initial 
cracking 

Bending 
+ Transv. 

Shear 



Department of Structural Engineering 
Small Panel Modeling 

Exterior View 
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Test and Model Comparison 
•  stringer-skin delamination predicted between 

shear ties  
•  grows from loading location outwards 
•  FEA model successfully matches: 

•  Initial stiffness and failure initiation loads 
•  failure modes and final damage state 

Post-test 
damage state 

(hatched zones 
show skin-to-

stringer 
delamination) 

FEA model predicted 
delamination 

cl
ic

k 
fo

r a
ni

m
at

io
n 

Model Run Beyond Test 
Duration 



Department of Structural Engineering Modeling Capabilities Plan 
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Glancing Impact Size, Complex Internal 
Structure, Geom., Joints 

Various Impactors & 
Scenarios (vo) 

Models of 
Generic 
Curved Panel 
Specimens 
-  Static 
-  Dynamic 
Experimental 
Validation 

 

Capture Key Failure 
Modes (Major Damage) 

 

Damage Initiation Criteria 
 

Damage Progression 
 

Dynamic Effects 
 

Externally Visibility 
 

Establish 
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Define 
Methodologies 
With Element 
Level Tests 
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Apply to study and predict response for: 



Region 1 

Region 2 

Region 2 

Region 3 

Region 3 
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Floor Structure Interaction 

•  Region 1: most compliant – 
large deflection, bending 
dominated 

•  Region 2: more stiff – high 
beam shear stress 

•  Region 3: most stiff – direct 
GSE hits anticipated to 
readily damage frame and 
frame-to-floor joint 

Focus: 
•  frame-to-floor joint 

failure & stiffness/BC 
effect 

•  glancing Impact 
•  damage locations vs. 

contact location vs. 
external visibility 

 

A. explore via modeling 
how affected by 
various structural 
configurations – e.g., 
shear tie geom., 
stringer spacing, etc. 

B. test large specimen 
w/ new geom. Floor Beam 

NEW WORK – 

RECENTLY STARTED 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Blunt	
  Impact	
  Damage	
  to	
  Sandwich	
  Panels	
  
•  Inves?gate	
  internal	
  damage	
  morphology	
  of	
  impacts	
  on	
  sandwich	
  

panels	
  using	
  blunt	
  impact	
  sources	
  
–  metal	
  ?ps	
  of	
  varying	
  ?p	
  radii:	
  	
  R12.7	
  to	
  R76.2	
  mm	
  (low	
  vel.)	
  
–  50.8	
  mm	
  ice	
  spheres	
  at	
  glancing	
  angles	
  10	
  to	
  40	
  deg.	
  (high	
  vel.)	
  
–  special	
  focus	
  on	
  levels	
  just	
  barely	
  visible	
  damage	
  

•  understand	
  impact	
  condi?ons	
  resul?ng	
  in	
  subsurface	
  
damage	
  forma?on	
  (barely	
  visible	
  dents)	
  

•  focus	
  on	
  core	
  damage	
  with	
  no	
  facesheet	
  cracking	
  
•  relate	
  core	
  damage	
  severity	
  vs.	
  dent	
  depth	
  /	
  span	
  

•  Determine	
  the	
  reduc?on	
  in	
  core	
  strength	
  /	
  fracture	
  proper?es	
  as	
  
func?on	
  of	
  (i)	
  damage	
  severity	
  and	
  (ii)	
  dent	
  visibility	
  
•  direct	
  measurement	
  
•  modeling	
  (including	
  predic?on	
  of	
  impact-­‐induced	
  damage)	
  

•  Inves?gate	
  heavier-­‐core	
  sandwich	
  panels	
  with	
  thicker	
  facesheets	
  
•  varying	
  core	
  density,	
  varying	
  facesheet	
  config.	
  

Cu
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tly
	
  O
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re
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Sandwich	
  Panel	
  Specimens	
  
Tip-­‐damaged	
  A320	
  rudder	
  -­‐	
  received	
  from	
  Delta	
  Airlines	
  (P/N	
  D554	
  71004	
  0000)	
  

Test	
  specimens	
  details	
  
•  Outer	
  facesheet	
  thickness	
  –	
  1.19	
  mm	
  (0.047	
  in.)	
  
•  Inner	
  facesheet	
  thickness	
  –	
  0.64	
  mm	
  (0.025	
  in.)	
  
•  Core	
  thickness	
  –	
  29.4	
  mm	
  (1.16	
  in.)	
  
•  Core	
  density	
  –	
  32	
  kg/m3	
  (2	
  lb/b3)	
  
•  Cell	
  size	
  –	
  4.76	
  mm	
  (0.19	
  in.)	
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Low	
  Velocity	
  Blunt	
  Impact	
  
•  Pendulum	
  Impactor	
  with	
  1.4	
  m	
  arm	
  
•  Panel	
  held	
  in	
  a	
  165	
  mm	
  (6.5	
  in)	
  square	
  

opening	
  window	
  
•  12.7	
  to	
  76.2	
  mm	
  radius	
  ?ps	
  represent	
  

generic	
  low	
  velocity	
  sources	
  

R12.7	
   R25.4	
   R50.8	
   R76.2	
  

Dims	
  in	
  mm	
  

Low  Dent 
Relaxation 
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Low	
  Velocity	
  
Impact	
  Damage	
  
Progression	
  

•  R50.8	
  ?ps	
  impacts	
  
from	
  4	
  to	
  14	
  J	
  
energy	
  

•  For	
  increasing	
  
energy:	
  
–  depth	
  of	
  core	
  
damage	
  does	
  	
  
not	
  strongly	
  
increase	
  

–  span	
  of	
  crushed	
  
zone	
  widens	
  

–  severity	
  of	
  core	
  
wall	
  fracture	
  
increases	
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4	
  J,	
  	
  
0.6	
  mm	
  
Dent	
  

6	
  J,	
  
1	
  mm	
  
Dent	
  

10	
  J,	
  
1.2	
  mm	
  
Dent	
  

14	
  J,	
  
1.25	
  mm	
  
Dent	
  

span	
  



High	
  Velocity	
  Ice	
  Impact	
  –	
  Example	
  Results	
  

Test	
  Details:	
  
Impact	
  Angle:	
  25	
  degrees	
  
Hail	
  Diameter:	
  50.8	
  mm	
  
Velocity:	
  43.3	
  m/s	
  
Peak	
  Dent	
  Depth:	
  0.40	
  mm	
  

Core	
  buckling/fracture	
  in	
  highlighted	
  region	
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Summary:	
  	
  Core	
  Blunt	
  Impact	
  Damage	
  Modes	
  

•  Mode	
  A:	
  slight	
  wrinkling	
  of	
  
cell	
  walls	
  (not	
  easily	
  visible)	
  

•  Mode	
  B:	
  clearly	
  visible	
  
wrinkling	
  of	
  cell	
  walls	
  

•  Mode	
  C:	
  buckling	
  of	
  cell	
  
walls;	
  folded	
  

•  Mode	
  D:	
  fracture/	
  burs?ng	
  
of	
  cell	
  walls	
  

Need	
  to:	
  
•  understand	
  physics	
  of	
  core	
  
damage	
  forma?on	
  

•  predict	
  core	
  damage	
  via	
  FEA	
  
•  relate	
  core	
  damage	
  to	
  
reduc?on	
  in	
  core	
  strength	
  

•  define	
  models	
  accurately	
  
predic?ng	
  core	
  damage	
  
propaga?on	
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(a) Mode A     (b) Mode B 

 

     
(c) Mode C     (d) Mode D 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Conclusions 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  accurate large structure modeling requires development of modeling capability 

based on simple structural element specimen tests 
•  layered modeling approach using continuum shells and cohesive surface 

interactions shown to be capable of predicting delamination and failure under 
high transverse shear 

•  within-ply failure under high out-of-plane shear requires 3D criterion – Hill 
used successfully, but need to implement user-material definition (3D Hashin) 

 
Blunt Impact Damage to Sandwich Panels 
•  significant internal core damage possible with very low dent levels 

–  any surface-visible denting = significant internal core damage 
•  fracture of core walls found to be approx. planar and at fixed depth below 

facesheet/core interface (roughly 1X to 2X cell size) 
•  blunter impacts (larger radius) produce more shallow dents that exhibit more 

relaxation over time 
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Benefits to Aviation 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  Understanding of prospective damage produced from wide-area GSE impact events 

•  awareness of phenomena and possible internal failure modes 
•  provides key information on mode and extent of seeded damage, particularly non-

visible impact damage (NVID) from blunt impact threats – for Damage Tol. scenarios 
•  threat conditions causing significant damage – range of energy level needed 

•  Establish FEA modeling capability that can predict: 
•  onset and growth of cracks that lead to large-scale damage and degradation  
•  damage locations – could be away from location of impact 
•  if GSE impact damage is visible from exterior 
•  response of different configuration of interest 

•  Identify how to detect/monitor occurrence of damaging events 
•  key measurable quantities signifying major damage creation – e.g., acoustic waves 
•  what inspection technique should be used? where? 

 

Blunt Impact Damage to Sandwich Panels 
•  Increase understanding of: blunt impact damage modes, governing mechanisms 
•  Insight into properly seeding damage for damage tolerance assessment 
•  Assessment of internal core damage state based on external damage visibility 



Looking Forward 1/2 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  Include effects of floor joints and floor beams to better represent fuselage structure 
•  Systematically investigate effect of geometry of components on blunt impact damage – 

e.g., geom. and position of stringers, shear ties, frames 
•  Quarter-barrel or half-barrel fuselage tests 

–  needs to include internal floors, joints, and other structure 
–  impact with actual GSE vehicle (or rolling-mass representative) 
–  glancing impact effects 

•  Blunt Impact on Other Structure Types 
–  metal-composite hybrid , all-metal construction, aged metal structures (WFD interest) 
–  sandwich construction 
–  non-fuselage locations – e.g., lower wing and empennage surfaces 

•  Continued developments to establish high fidelity FEA modeling capability 
–  accurately predict damage initiation, progressive failure process, damage extent, energy 

absorption, accounting for interlaminar failures 
•  Define generally-applicable visibility metrics and failure criterion compatible with FEA 
•  NDE methods for finding major damage to internal structure, including frame cracks and 

shear tie failures  
•  Education/Training: dissemination of results, host workshops 
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Looking Forward 2/2 
Blunt Impact Damage to Sandwich Panels 
•  Relate observations of internal core damage depth and span to external visibility 
•  Compression after impact testing of the panels tested – relate residual strength to types of 

damage 
•  Establish capability within explicit FEA simulation to predict: 

–  blunt impact induced damage modes, size, and severity 
–  post-impact residual strength reduction – damage propagation under peel and transverse shear 

•  Conduct post-impact facesheet peel/fracture tests 
–  focus on sub-visible core damage effects 
–  damage modes and morphology relationship to core, facesheet, and adhesive attributes 
–  correlate results with FEA predictions 

•  Investigate effect of multi-hit and impact adjacency 
•  Determine how core/facesheet/fillets interact with each other as related to impact damage 

formation, location, and subsequent disbond growth 
•  Explore efficient and effective NDE methods to assess core damage 
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