

Test Method Development for Environmental Durability of Composite Bonded Joints

Dan Adams, Larry DeVries
Nicholas Brown, David Ricsi, Karli Gillette
University of Utah

2014 Technical Review

FAA Sponsored Project Information

Principal Investigators: Dr. Dan Adams,
 Dr. Larry DeVries

Graduate Student Researchers:

Nicholas Brown

David Ricsi

FAA Technical Monitor:

Curt Davies

Collaborators:

Boeing: Kay Blohowiak and Will Grace

Air Force Research Laboratory: Jim Mazza

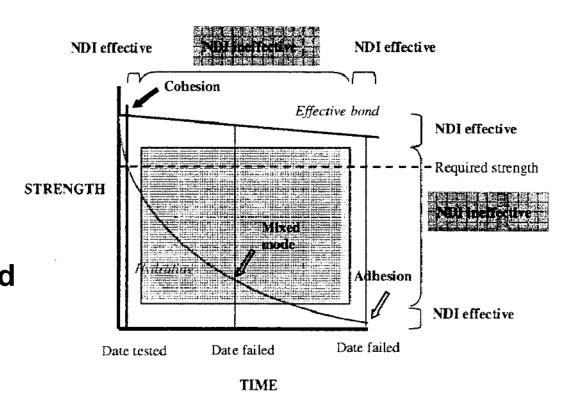
Outline

- Overview: Environmental durability testing of metal bonded joints
- Candidate environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
- Current Status and Upcoming Work

Our Earlier Research Focus: Improving ASTM D3762 Metal Wedge Test

ASTM D 3762: "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Able to asses quality of bond quickly by causing rapid hydration of oxide layers
- Bonded aluminum cantilever beam loaded by forcing a wedge between adherends
- Wedge is retained in specimen
- Assembly placed into test environment
- Crack growth due to environmental exposure is measured following a prescribed time period



Background: Environmental Durability Degradation of Metal Bonds Due To Hydration

- Aluminum when exposed to oxygen forms an aluminum oxide surface layer 4Al + 3O₂ => 2Al₂O₃
- Aluminum oxide layer hydrates when exposed to water Al₂O₃ + 3H₂0 => 2Al(OH)₃
- Hydration causes bond degradation (metal adherends)

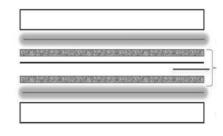
Davis and McGregor, "Assessing Adhesive Bond Fatheres: Mixed-Mode Bond Fatheres Explained" (2010)

Why Environmental Durability Tests of Composite Bonded Joints?

"There is currently no known mechanism similar to metal-bond hydration for composites"

- Ensure longer-term environmental durability of composite bonds
- Investigate effects of environmental exposure on performance of bonded composite joints
 - Failure mode: cohesion versus adhesion failure
 - Estimate fracture toughness reduction
- Assess effectiveness of surface preparation

Environmental Durability Testing of Composites:Candidate Test Methods


Static Wedge Crack Test

Traveling Wedge Test

Boeing Back-Bonded DCB

Van Voast et al., SAMPE 2013

Development of a Composite Wedge Test: Additional Complexities

- Variable flexural stiffness of composite adherends
 - Environmental crack growth dependent on adherend flexural stiffness
 - Must be within an acceptable range
 Or
 - Must tailor wedge thickness for composite adherends
- Restrictions in fiber orientation adjacent to bonded interface
- Failure in the composite laminate prior to failure in the adhesive or at the bondline

Estimate of Fracture Toughness, G_c Using Static Wedge Test

Consider composite adherends as cantilever beams

- · Measured values of crack length, a
- Known value of beam deflection, δ

$$\delta = t/2$$
 (half of wedge thickness)

$$T = \frac{E_f b h^3 t}{8 a^3}$$

Strain energy due to bending: $U = \frac{1}{2}T \delta$

Strain energy release rate: $G_c = \frac{dU}{da}$

$$G_c = \frac{3 E_f t^2 h^3}{16 a^4}$$

a = crack length

t = wedge thickness

h = adherend thickness

b = specimen width

T = load to deflect tip of beam

 E_f = flexural modulus

 G_c = fracture toughness

Effect of Flexural Stiffness of Composite Adherend on Crack Growth

Wedge testing using with two different adherend thicknesses:

- Same composite material, same laminate (same E_f)
- Two laminate thicknesses: h = 0.06 in. and h = 0.12 in.
- Assume 50% reduction in G_c from 25 to 12.5 in-lb/in²

$$G_c = \frac{3 E_f t^2 h^3}{16 a^4}$$
 \Rightarrow $a = \sqrt[4]{\frac{3 E_f t^2 h^3}{16 G_c}}$

For h = 0.06 in.

For
$$h = 0.12$$
 in.

$$a_{initial} = 0.879 in.$$

$$a_{final} = 1.046 in.$$

Total Growth = 0.17 in.

$$a_{initial} = 1.479 in.$$

$$a_{final} = 1.759 in.$$

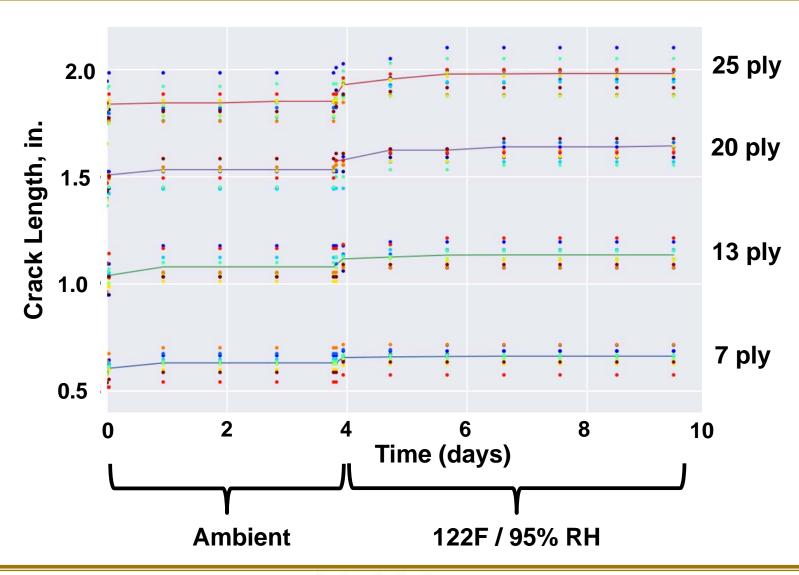
Total Growth = 0.28 in.

Changing adherend flexural stiffness changes...

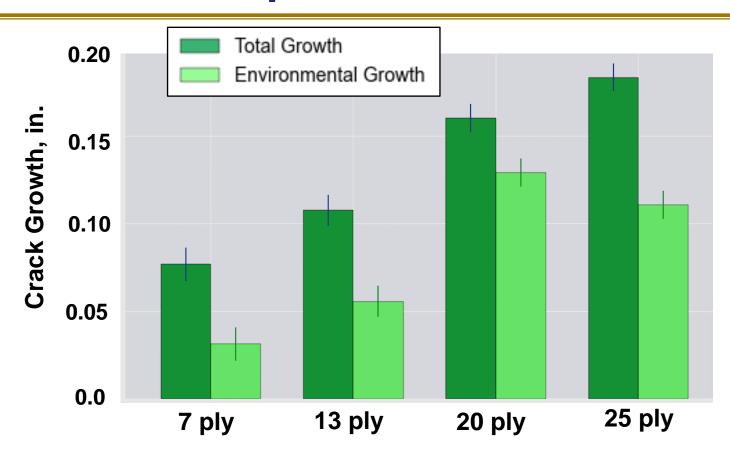
- Initial crack length

- Environmental crack growth

Effect of Adherend Flexural Stiffness: Experimental Investigation


- Unidirectional IM7/8552 carbon/epoxy adherends
- AF163-2K film adhesive
- Grit-blast & solvent wipe surface preparation
- Four adherend thicknesses to produce different E_f
 - Thick adherends: maximize crack growth (25 ply)
 - Match thickness of aluminum 1/8 in. adherends (20 ply)
 - Match El of aluminum adherends (13 ply)
 - Thin adherends: minimize crack growth (7 ply)
- 122°F (50°C) and 95% humidity environment for 6 days

Static Wedge Test Results: Effects of Composite Adherend Thickness



Summary of Results: Effects of Composite Adherend Thickness

Increasing adherend thickness (and flexural modulus)...

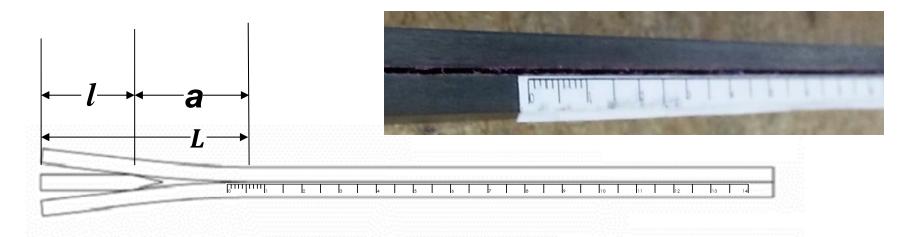
- Increases crack length
- Increases crack growth

Composite Wedge Test Development: Current and Upcoming Work

- Investigate temperature sensitivity of test results
- Investigate "non-ideal" surface preparation conditions
 - Released and unreleased nylon peel ply
 - Grit blasted, hand sanded
 - Released and unreleased polyester peel ply
 - Grit blasted, hand sanded
- G_{1c} correlation between static wedge, travelling wedge and DCB tests

Traveling Wedge Test for Environmental Durability Assessment

- Longer version of static wedge specimen
- Moisture saturation of bonded composite specimen prior to testing
- Wedge driven continuously through adhesive bondline at elevated temperature using testing machine
- Assessment of relatively large bond area
- Can provide an estimate of G_c
- Limited prior usage/investigation for environmental durability assessment



Traveling Wedge Test:

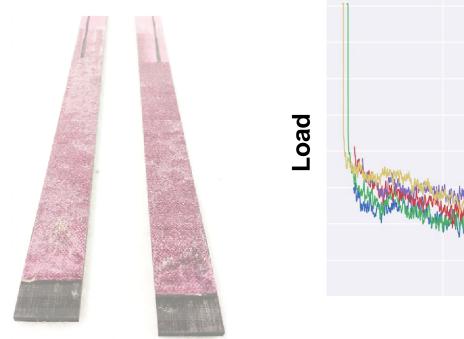
Test Methodology

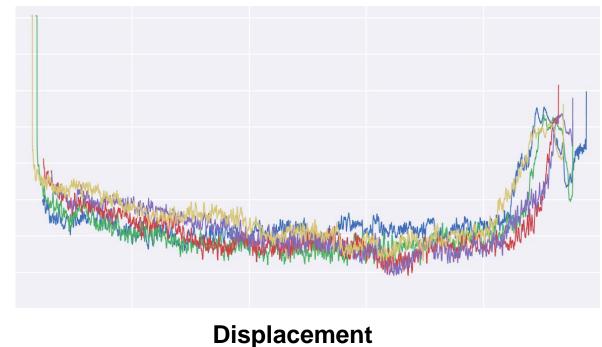
- Moisture saturation of specimen prior to testing at elevated temperature
- Wedge insertion similar to static wedge test
- Record position of crosshead of test machine associated with initial wedge position in specimen
- Record crosshead displacement associated with prescribed increments of crack extension (5 mm)
- Determine crack length beyond wedge, a
- Calculate G_c as for static wedge test

$$G_c = \frac{3 E_f t^2 h^3}{16 a^4}$$

Traveling Wedge Test: Initial Assessment

- Unidirectional IM7/8552 carbon/epoxy adherends
 - Thin adherends: (3 ply, 0.024 in.)
 - Preferred for shorter moisture saturation time
 - Of concern due to short crack length
 - Thick adherends: (20 ply, 0.144 in.)
 - More representative of static wedge and DCB specimens
 - Long moisture saturation time (reduced if "back-bonded")
- AF163-2K film adhesive
- Two surface preparations investigated
 - "Ideal": Grit-blast & acetone wipe
 - "Non-ideal": Nylon peel ply

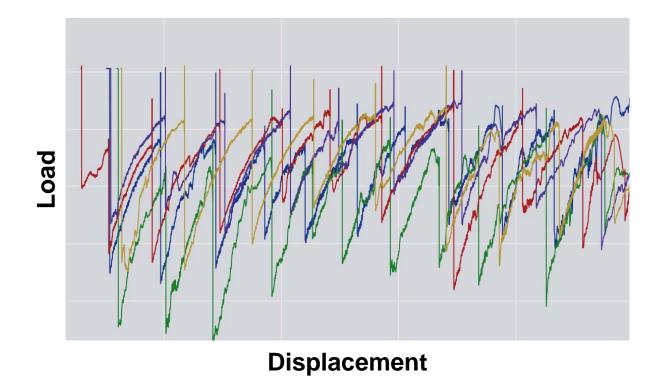




Traveling Wedge Test: Initial Results Using Thick Adherends

"Ideal" bond (grit blasted) at room temp/ambient conditions

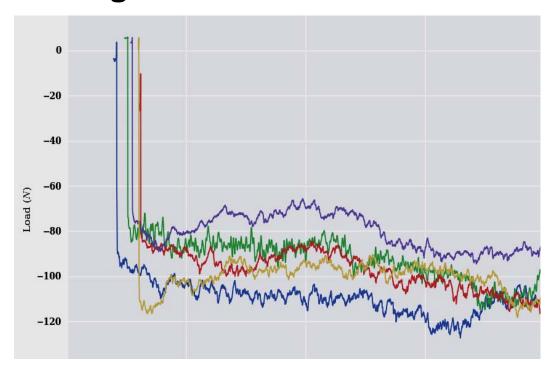
- Cohesion failure
- Stable crack growth
- Repeatable results

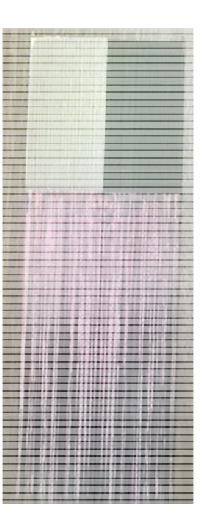


Traveling Wedge Test: Initial Results Using Thick Adherends (Con'd)

"Non-Ideal" bond (Nylon peel ply) at room temp/ambient

- Adhesion failure
- "Stick-slip crack growth behavior



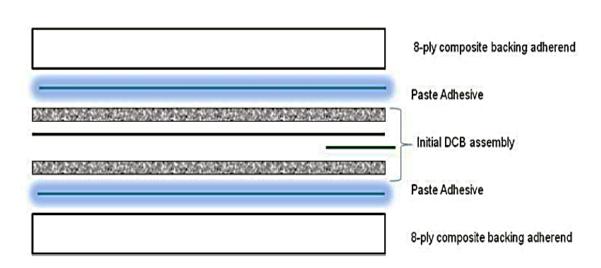

Traveling Wedge Test: Initial Results Using Thin Adherends

"Ideal" bond (grit blasted) at elevated temp/wet conditions

- Moisture saturation in ~3 weeks
- Tested at 122°F (50°C)
- Significant interlaminar failure

Traveling Wedge Test Assessment: Current and Upcoming Work

- Further evaluation of adherend thickness effects
- Testing of additional "non-ideal" surface preparations conditions
- Comparison of G_c estimates with static wedge, and back-bonded DCB tests



Environmental Durability Testing: Boeing Back-Bonded DCB Test

- Bond thin adherends with desired surface preparation and adhesive
- Moisture saturate thin bonded composite specimen
- Bond doubler panels to thin specimens to produce full DCB specimen thickness
- Test at elevated temperature conditions

Van Voast, Blohowiak, Osborne and Belcher, "Rapid Test Methods for Adhesives and Adhesion" (SAMPE 2013)

Boeing Back-Bonded DCB Test:Current and Upcoming Work

- Testing of "ideal" and "nonideal" surface conditions
- Investigate effects of test temperature
- Provide baseline G_c values for comparison with static wedge, and traveling wedge testing

Environmental Durability Testing of Composites: Summary of Candidate Test Methods

Static Wedge Crack Test

- Simple to perform
- Several tests performed concurrently
- Estimate Gc at both ambient and hot/wet conditions
- Extended time in environmental chamber
- Small bond area assessed

Traveling Wedge Test

- Relatively large bond area may be assessed
- Estimate Gc at hot/wet conditions
- Single specimen tested at a time
- Moderate to relatively long moisture conditioning

Boeing Back-Bonded DCB

- Accurate, well accepted measure of Gc
- Single specimen tested at a time
- Moderate moisture conditioning time

8-ply composite backing adherend

8-ply composite backing adherend

Initial DCB assembly

Paste Adhesive

SUMMARY

Benefits to Aviation

- Improved environmental durability test method for metal bonds (metal wedge test, ASTM D3762)
- Composite wedge test for assessing the environmental durability of composite bonds
- Evaluation of candidate test methods for assessing the environmental durability of adhesively bonded aircraft structures
- Dissemination of research results through FAA technical reports and conference/journal publications

