

Durability of Bonded Aerospace Structures

Dr. Lloyd Smith
Harrison Scarborough
Washington State University

JAMS 2014 Technical Review March 25-26, 2014

Introduction

Why use adhesives?

- High <u>strength</u>
- Low weight
- Reduced holes or no holes
- Join thin materials
- Join dissimilar materials
- High <u>fatigue</u> resistance

Significant use aboard current and future aircraft.

Low confidence in our ability to describe durability.

Introduction

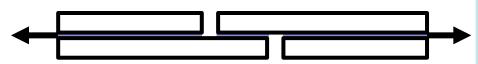
Aim

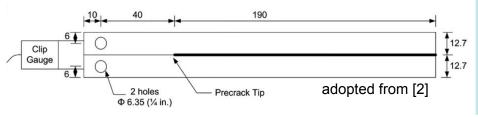
- Consider the relation between adhesive quasi-static and fatigue performance.
 - Shear and peel stress
 - Toughened and brittle systems

Literature Review

- Fatigue response of double cantilever beam specimen – Azari et al.
- Variable amplitude fatigue testing of single Lap shear specimen – Shenoy et al.
- Fatigue performance versus scarf angle Jen

None address the role of toughness



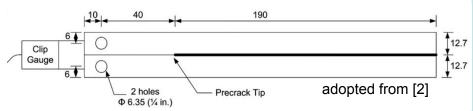


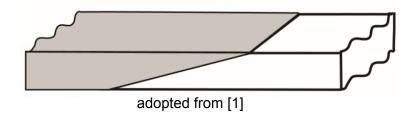
Quasi-static Testing

Wide Area Lap Shear

Double Cantilever Beam

	Number of Coupons	Adherend	Adhesive		
Quasi-Static	5	2024-T3	FM300-2	WALS	
	5	2024-T3	EA9696		
	5	2024-T3	EA9394		
	5	2024-T3	EA9380.05		
	5	2024-T3	FM300-2	DCB	
	5	2024-T3	EA9696		
	5	2024-T3	EA9394		
	5	2024-T3	EA9380.05		





Fatigue Testing

Double Cantilever Beam

Scarf

	Number of Coupons	Adherend	Adhesive		
Fatigue	5	2024-T3	FM300-2		
	5	2024-T3	EA9696	CB	
	5	2024-T3	EA9394		
	5	2024-T3	EA9380.05		
	25	2024-T3	FM300-2	Scarf Joint	
	25	2024-T3	EA9696		
	25	2024-T3	EA9394		
	25	2024-T3	EA9380.05		

Adhesive Selection

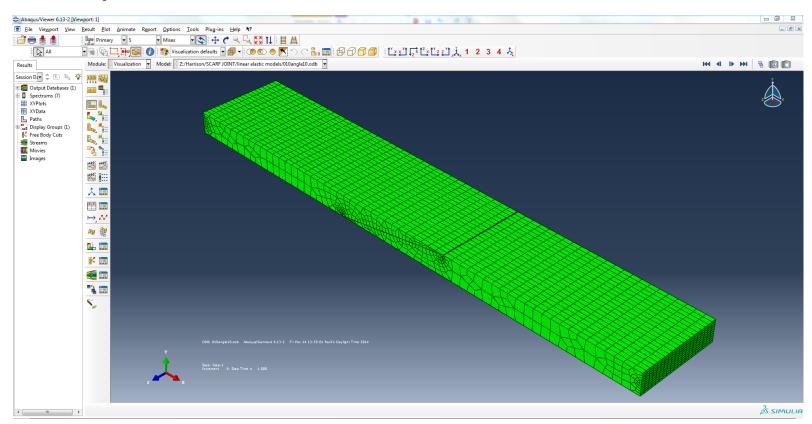
- 65% variation in Peel Strength
- 33% variation in Lap Shear Strength

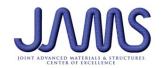
Adhesive	Peel Strength	Peel Test	Tensile Lap Shear Strength	Toughness	Form
Hysol EA 9696 (0.060 psf)	100 in-lb/in	Metal to Metal Climbing Drum	6300 psi	Toughened	Film
Cytec FM 300-2K (0.08 psf)	35 in-lb/in	Metal to Metal Climbing Drum	5900 psi	Brittle	Film
Hysol EA 9394	20 lb/in	Floating Roller Peel Strength	4200 psi	Brittle	Paste
Hysol EA 9380.05	*	*	*	Toughened	Paste

*No data available

Adherend Selection

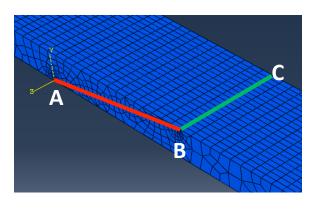
- 2024-T3 Aluminum
 - High fatigue resistance
 - Higher stiffness compared to 6061-T6
 - Lower corrosion resistance
 - Phosphoric acid anodized per BAC5555 both sides
 - Primed per BAC5514-589 using Cytec Engineered Materials BR6747-1 Bonding Primer
 - Common in aerospace structures




Finite Element Analysis (FEA)

Abaqus

1"x0.25"x6" - 2,000 lb load



Finite Element Analysis (FEA)

Peel stress along line A-B

10 degree scarf joint will provide shear stress testing with minimal peel stresses.

Summary

- Compare static and fatigue response
- Consider the roll of toughness on fatigue
- Consider shear and peel dominated stress

Results will lead to improved life prediction methodologies

