
FEA of Composites: The Fundamentals and Beyond...

Paul E. Labossiere

Role of FEA in Design

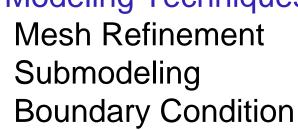
- Gain understanding
- Explore feasibility
- Optimize a particular solution
- Evaluate safety and efficacy

"The purpose of computing is insight, not numbers"

R. W. Hamming

List of Proposed Topics

1 Review of FEA Principles and Practices


Governing Equations

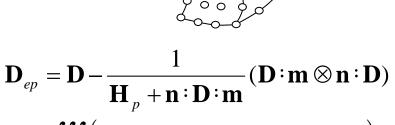
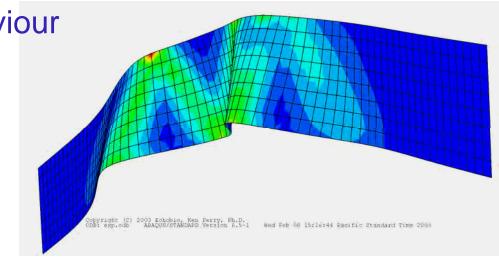

1-D-to 3-D elements

Plate and Shell Formulations


Boundary Condition Interpretation

$$\mathbf{K}_{L} = \iiint_{V} \left(\mathbf{B}_{O}^{T} \mathbf{D} \mathbf{B}_{L} + \mathbf{B}_{L}^{T} \mathbf{D} \mathbf{B}_{L} + \mathbf{B}_{L}^{T} \mathbf{D} \mathbf{B}_{O} \right) dV$$

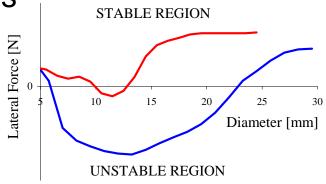
3 Sources of Nonlinear Behaviour **Plasticity Large Deformations** Finite Strains **Buckling**

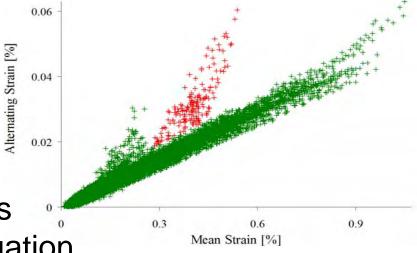
4 Convergence Criteria

Tolerances and Residual Forces

Restarts

5 Composites


Anisotropic Materials Layered Elements Ply Drop-Offs Cores


6 User Subroutines

Constitutive models Field Variables

7 Reliability

Damage and Delaminations Fatigue Performance Evaluation

Goals

 Provide the composite specialists with the basic understanding of FEA methodology and solution interpretation

 Provide the FEA jockey with the basic understanding of additional complexities associated with modeling composites

Proposed Format

```
Day 1
  4-hour class (topics 1, 2, 3)
  1 hour class (topics 4,5)
  2 hour computer lab (review topics 1-5)
  1 hour class (good fea practices)
Day 2
  4-hour class (topics 5-7)
  2-hour computer lab (composites applications)
  1 hour class (good fea practices)
  1 hour round table???
```

Feedback Needed

Additional topics and format

Define audience and select instructors/lab assistants

Appropriate platform (ABAQUS, Ansys, other??)

Workshop format (computer laboratory setting??)

- demonstrate key concepts through selected examples

Contact: Paul Labossiere labossie@u.washington.edu