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Objective: Simplify certification of DFC aircraft parts

Technical Approach: HexMC (a DFC being used on the
B787) selected as a model material. For this material,
perform:

* Experimental studies of HexMC mechanical behaviors, starting
with simple coupon-level specimens and progressing towards
“complex” parts

* Study effects of processing (e.g., impact of material flow
during molding on stiffness and strength)

* Develop stochastic modeling approaches
 Compare measurements with analytical-numerical predictions
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Principal Investigators & Researchers (UW):

*  PI: Mark Tuttle
*  @Grad Students: Brian Head and Tory Shifman (MSME ‘11)
*  (Prior to 2011 Prof. Paolo Feraboli and his grad students also participated)

FAA Technical Monitor
* Lynn Pham

Other FAA Personnel Involved

* larry llcewicz

Industry Participation
*  Boeing: Bill Avery
*  Hexcel: Bruno Boursier, David Barr, and Marcin Rabiega
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Previous work has shown:

HexMC coupon tests exhibit relatively high levels of scatter
* HexMCis notch insensitive

* Material flow causes modest chip/fiber alignment and a
measureable change in stiffness and strength

* A modeling approach called the “Stochastic Laminate Analogy”
(SLA) was developed

* Elastic bending stiffness of HexMC angle beams exhibits scatter
equivalent to that encountered in coupon tests
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Focus of this presentation:

e Predicting buckling/fracture of HexMC angle beams
*  Predictions using isotropic material properties
e Causes of errors in predictions
*  Future work to address errors

* Ongoing work
* Angle beams
* Intercostals
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* Three sizes of angle beams compression molded from HexMC were
tested in a four point bending fixture
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* Both small and large angle sizes buckled/crippled well before

fracture
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* Both small and large a \ Il before
fracture _
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* Medium size angles fractured prior to (or simultaneously with) the
onset of buckling
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Calculated B-Basis and B-Max
moduli based on experimental
data

e (Calculated following Mil17
HDBKv. 1 ch. 8

 B-Max is the modulus
under which 90% of
samples should fall 95% of
the time

Predicted failure using B-Basis
and average strengths

Moduli (Msi)

Used in FE Analyses

B-Basis

Average B-Max

Compression

5.36

6.31 /.27

Tension

5.58

6.62 7.65

Strengths (ksi)

B-Ba

sis JAverage

Compression

50.2 57.0

Tension

40.2 49.9
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Both solid and shell elements
used (equivalent results
obtained ) 5 061 |

15456

Element size convergence study
performed

Modeled over range of linearly
elastic moduli

Effects of flange thickness
variations studied

Medium Angle Modeled with Frame
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Small Angle Predictions
Based on design thickness
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Medium Angle Predictions
Based on design thickness
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Large Angle Predictions
Based on design thickness
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Measured thickness
of two angles of
each specimen size
in 36 locations

Modeled with three

different thicknesses
1. Design thickness

2. Measured thickness
mapped to 36 locations

3. Average of 36 measured
thicknesses

Effect of Thickness Variations
For small angle
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Effect of Thickness Variations
- e, FOr medium and large angles
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* For all three angle sizes, predictions based on mapped
thicknesses were nearly identical to those based on
average thicknesses.

* For both small and large angles, using measured
thicknesses decreased the predicted buckling and failure
loads (resulting in an improved comparison between
measurement and prediction).
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Measured vs Predicted

Buckling Loads

Low Average High
Moment Error Moment Brror Moment Brror
(in-1bf) (in-1bf) (in-1bf)
Experiment 2112 - 2451 - 2747 -
Small Design 2675 26.7 % 3155 | 28.7% | 3634 |32.3%
Angle
Measured 5546 | 20.5% | 3002 | 224% | 3458 |25.9%
Average
Experiment - - - - - -
Med. Design 20298 - 23934 - 27535 -
Angle
Measured | =58 - 23733 | - | 27303 | --
Average™
Experiment | 15550 - 19256 - 20949 -
Large Design 21685 39.5% 25569 | 32.8% | 29457 | 40.6%
Angle
Measured | 19148 | 251% | 22931 |19.1% | 26418 |26.1%
Average™

*Average measured thickness of all specimens of that size
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Low Average
Momen
Moment .
(in-1bf) Error t (in- Error
1bf)
Experiment| 2307 -~ 2546 --
Small Design 2880 24.8 % 3358 | 31.9%
Angle
nele | Measured | 000 | 17300 | 3158 | 24.0%
Average
Experiment | 17350 -~ 18707 -~
Med. Design 18094 4.3 % 22111 | 18.2%
Angl
ngle | Measured | 10003 | 03% | 21149 | 131%
Average
Experiment | 18260 -- 21330 --
Large Design 25820 | 41.4% | 29776 | 39.6%
Angl
nele | Measured | 0017 | 3159 | 27568 | 29.2%
Average

*Average measured thickness of all specimens of that size




d’”Lq S Possible Source of Remaining

Advanced Materials in E r ro rS

Transport Aircraft Structures

* Buckling and fracture loads were over-predicted by ~20% and
~25%, respectively

* Cause is suspected to be partially due to local “modulus”
variations




A Center of Excellence

AMMS Ongoing Work

Advanced Materials in
Transport Aircraft Structures

Analysis

* A stochastic analysis (similar to the Feraboli SLA approach)

which includes coupling effects is being developed and
implemented

*  Will be applied to HexMC angles
*  Will be applied to HexMC Intercostals

Experimental

 Failure loads and modes of a cantilevered HexMC intercostals
being measured using digital image correlation (DIC)

[1] Feraboli et. Al. Comp. Pt. A 41 (2010) 557-570
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Thank you for your attention!

Questions?
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* Testing of intercostals to failure in cantilevered configuration

FEA modeling of intercostal using isotropic properties
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Intercostals tested in a cantilevered configuration, allowing the
loaded end to rotate freely.

Three specimens were tested to failure initially

Strains were measured with Digital Image Correlation (DIC) on the
front face of the intercostal

¢
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* Intercostals tested in a cantilevered configuration, allowing the
loaded end to rotate freely.

 Three specimens were tested to failure initially
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Strain in the horizontal direction measured using DIC
* Immediately pre and post failure

* Failure occurs near clip end, far away from max and min
stresses

Specimen 1 — 765 |bs Specimen 3 — 739 |bs
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Modeled with 10 noded
tetrahedral solid elements

Modeled over same range

in moduli as angles
. B-Basis in Compression - 5.36 Msi

*  Average in Compression - 6.31
Msi

. B-Max in Compression —7.27 Msi

Intercostal Model

Compared predicted to measured clip end displacements
and rotations
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Angle Modeling
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Angle Modeling
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* Assigns random stacking
sequence to fixed size
Random Representative
Volume Element (RRVE)

* Uses “Chip Properties”

e  Meshes FEA elements with

assigned layup to each
RRVE

* Analyzes model, and starts with new
sequence of layups
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 1.5” x12” specimens cut from low flow HexMC plates

left over from previous work

0.140” thick
0.090” thick

*  Displacements measured using DIC and used to calculate strain

*  Comparison of strain distributions and out of plane displacements being
used to determine RRVE size
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W [mm]

o0z 0024 in
I 0.0489375

 0.25” RRVE over predicts W
*  0.5” RRVE under predicts W o -
*  Further testing will reveal if _
proper RRVE size is dependent
on thickness of specimen .
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Method is being
extended to angles
to hopefully
improve buckling
predictions
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