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Outline
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• RELACS software
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Reliability-Based Damage Tolerant 
Structural Design Methodology

Motivation and Key Issues: Composite materials are being used in 
aircraft primary structures such as 787 wings and fuselage. In these 
applications, stringent requirements on weight, damage tolerance, 
reliability and cost must be satisfied. Although currently there are 
MSG-3 guidelines for general aircraft maintenance, an urgent need 
exists to develop a standardized methodology specifically for 
composite structures to establish an optimal inspection schedule
that provides minimum maintenance cost and maximum structural 
reliability. 

Objective: Develop a probabilistic method for estimating structural 
component reliabilities suitable for aircraft design, inspection, and 
regulatory compliance.
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Technical Approach

The approach is based on a probabilistic failure analysis with 
the consideration of parameters such as inspection intervals, 
statistical data on damages, loads, temperatures, damage 
detection capability, residual strength of the new, damaged 
and repaired structures.

The inspection intervals are formulated based on the 
probability of failure of a structure containing damage and 
the quality of a repair. 

The approach combines the “Level of Safety” method 
proposed by Lin, et al. and “Probabilistic Design of 
Composite Structures” method by Styuart, at al.
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The Probabilistic Model
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Input Data Requirements

• Necessary
– Loads Exceedance
– Damage Exceedance
– Residual Strength
– Inspection Interval
– Detection Probability
– Repair Quality

• Additional
– Temperature
– Aging
– Damage Growth
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RELACS: Reliability-based Lifecycle 
Analysis of Composite Structures

1st release of RELACS 
has been completed

RELACS User Manual has 
been completed
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• “Static” failure: load exceeds the strength of damaged 
structures

• Deformation exceeds acceptable level
• Flutter: airspeed exceeds the flutter speed of damaged 

or repaired structure*
• High amplitude limit cycle oscillations: the acceptable 

level of vibrations is exceeded* 
• Other single dimension failure criteria…

*See Livne and Styuart, “Combined Local-Global Variability and Uncertainty in 
the Aeroservoelasticity of Composite Aircraft”

Failure Modes Considered in RELACS:

RELACS: Reliability-based Lifecycle 
Analysis of Composite Structures
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Input Data Management

Load Exceedance

Damage Exceedance
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Input Data Management

Residual Strength

Damage Detection 
Probability
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Damage Growth Consideration 
Integration into RELACS
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Damage Growth Consideration 
Integration into RELACS
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Damage Growth Analysis 
with RELACS
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Fatigue Life

Damage Growth
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VCCT
(or other damage growth and 

assessment mechanism)

Problem Definition Analysis Input Data
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Damage Growth Scenario 
Crack in Fuselage Skin-Stringer Bond

• A generic composite fuselage sub-section (24-ply quasi-isotropic) with hat stringer 
(8-ply quasi-isotropic) reinforcement is modeled in ABAQUS  (r = 115”; one frame 
bay is considered)

• Disbonding of various sizes are implanted at the center of the stringer, on one legs 
of the hat stringer

• Skin-stringer debonding under shear is considered 
• Frames spacing at 24” (debonding cannot penetrate frame locations)
• Disbond growth analysis took advantage of the commercially available ABAQUS 

with VCCT (Virtual Crack Closure Technique)
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Debonding with Respect to Load (torque) for 
Initial Debond Size of 0.96in
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Damage Growth Consideration 
Example of Disbond Growth Results

Initial flaw = 0.96in
• Torsion load on fuselage 

is ramped from 0 in-lb to 
3.0 x108 in-lb

• Crack front is not 
perpendicular to stringer 

as it propagates

click for movie

stable growth

unstable growth
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Damage Growth Consideration 
Results for Various Initial Damage Size

• Ultimate load capability 
reduction of the fuselage 
due to completed 
debonding of one stringer  
is minimal. 

• There is a significant 
difference between stable 
and unstable growth load 
levels.

• Sub-structure is considered 
“completely failed” when 
unstable growth load level 
is reached and the stringer 
completely separately from 
the skin for the entire frame 
bay.

Bonded Joint Strength vs. Initial Disbond Damage Size
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Probabilistic Inputs: 
External Loads

• Inversely determined using the static strength of the 
fuselage skin

• “Overload factors” are used for providing safety over 
the wider scatter of material properties
– Limit load × 1.5 × overload factor = overall strength

• Distribution of peak load is taken from atmospheric 
turbulence, which is approximately exponential

* FAA Static Strength Substantiation of Composite Airplane Structure 
(Policy Statement PS-ACE100-2001-006)



20The Joint Advanced Materials and Structures Center of Excellence

Results on Overload Factor

POF vs. Overload Factor
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Results on Inspection Interval

POF vs. Inspection Interval
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Effects of Damage Growth 

• Detrimental effect on residual strength due to damage 
growth is small compared to original strength

• The effect of higher risk associated with larger damages 
after growth is offset by the increase in probability of 
detection by inspection

• The load range in which a damage could grow is very 
small, thus the probability of a damage growth event is 
also very small. The differences fall within noise of 
random simulation.

… consideration of damage growth in damage tolerance of  
composites is very much different from that of metallic structures
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Work Plan: 
More Complex Structural Models

Current Capabilities:
Fixed Set of Random Variables
Failure Criteria (one of the following):

• Stress  > Allowable
• Load  > Strength
• Temperature  > Allowable
• Debond Area  > Allowable
• Airspeed > Flutter Speed

Post-primary- Failure Criteria
Non-random Aging-Humidity 
Infiltration Model
Simplified Utility Equations

Desired Capabilities:
• More user-defined random variables

Damage-dependent

Variables

Damage-independent

Variables

FE Model

• User-defined failure criteria

• More complex structural model

Damage-dependent
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Damage-independent

Variables

Mechanical Load
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Summary

Work Accomplished:
Developed a probabilistic method for determining POF and the inspection 

intervals

Developed a computer code (RELACS) for calculating POF and the inspection 
intervals

Mined statistical data on damage and other probabilistic parameters.

Complete a user manual for RELACS

Develop an example with FEA ABAQUS software for damage growth analysis

Work in Progress:
Work with engineers at Boeing to apply RELACS to design and maintenance 

of composite aircraft

Develop more complex structural model, e.g. stochastic FE models

Add user-defined parameters, e.g. damage growth under fatigue loads
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A Look Forward

Benefit to Aviation
– The present method allows engineers to design damage tolerant 

composite structures for a predetermined level of reliability, as 
required by FAR 25.

– The present study makes it possible to determine the 
relationship among the reliability level, inspection interval, 
inspection method, and repair quality to minimize the 
maintenance cost and risk of structural failure.

Future needs
– A standardized methodology for establishing an optimal 

inspection schedule for aircraft manufacturers and operators. 
– Enhanced damage data reporting requirements regulated by     

the FAA.
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