Development of Reliability-Based Damage
Tolerant Structural Design Methodology

Chi Ho E. Cheung, Andrey Styuart and Kuen Y. Lin
Department of Aeronautics and Astronautics
University of Washington

October 25, 2007

The Joint Advanced Materials and Structures Center of Excellence



Contributors
K - =

Principal Investigator:

e Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
Research Scientist: Dr. Andrey Styuart, UW
Research Assistant: Chi Ho “Eric” Cheung, UW
FAA Technical Monitor: Curtis Davies
Other FAA Personnel: Dr. Larry licewicz

Industry Participants: Dr. Cliff Chen, Gerald Mabson, Dr. Lyle
Deobald, Dr. Mostafa Rassaian, Dr. Hamid Razi, Mr. Randy
Coggeshall, Dr. John Quinlivan (Ret.), Dr. Alan Miller (All from
Boeing)

The Joint Advanced Materials and Structures Center of Excellence



Outline
... ——
Motivation and Objectives
RELACS software
Damage Growth Modeling
Case Study- Fuselage Skin-stringer Disbond

Summary

The Joint Advanced Materials and Structures Center of Excellence



Reliability-Based Damage Tolerant
Structural Design Methodology
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Motivation and Key Issues: Composite materials are being used in
aircraft primary structures such as 787 wings and fuselage. In these
applications, stringent requirements on weight, damage tolerance,
reliability and cost must be satisfied. Although currently there are
MSG-3 guidelines for general aircraft maintenance, an urgent need
exists to develop a standardized methodology specifically for
composite structures to establish an optimal inspection schedule
that provides minimum maintenance cost and maximum structural
reliability.

Objective: Develop a probabilistic method for estimating structural
component reliabilities suitable for aircraft design, inspection, and
regulatory compliance.
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Technical Approach
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= The approach is based on a probabilistic failure analysis with
the consideration of parameters such as inspection intervals,
statistical data on damages, loads, temperatures, damage
detection capabillity, residual strength of the new, damaged
and repaired structures.

= The inspection intervals are formulated based on the
probability of failure of a structure containing damage and
the quality of a repair.

= The approach combines the “Level of Safety” method
proposed by Lin, et al. and “Probabillistic Design of
Composite Structures” method by Styuart, at al.
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The Probabilistic Model
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The Probabilistic Model
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Input Data Requirements
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 Necessary e Additional
— Loads Exceedance — Temperature
— Damage Exceedance — Aging
— Residual Strength — Damage Growth

— Inspection Interval
— Detection Probability
— Repair Quality
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RELACS: Reliablility-based Lifecycle
Analysis of Composite Structures
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1st release of RELACS RELACS User Manual has
has been completed been completed
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RELACS: Reliability-based Lifecycle
Analysis of Composite Structures

- -
Faillure Modes Considered in RELACS:

“Static” failure: load exceeds the strength of damaged
structures

Deformation exceeds acceptable level

Flutter: airspeed exceeds the flutter speed of damaged
or repaired structure*

High amplitude limit cycle oscillations: the acceptable
level of vibrations is exceeded*

Other single dimension failure criteria...

*See Livne and Styuart, “Combined Local-Global Variability and Uncertainty in
the Aeroservoelasticity of Composite Aircraft”
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Input Data Management

Load Exceedance
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Input Data Management
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Damage Growth Consideration
Integration into RELACS
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Damage Growth Consideration
Integration into RELACS
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Damage Growth Analysis

with RELACS
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Damage Growth Scenario
Crack in Fuselage Skin-Stringer Bond
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A generic composite fuselage sub-section (24-ply quasi-isotropic) with hat stringer

(8-ply quasi-isotropic) reinforcement is modeled in ABAQUS (r = 115”; one frame
bay is considered)

Disbonding of various sizes are implanted at the center of the stringer, on one legs
of the hat stringer

Skin-stringer debonding under shear is considered
Frames spacing at 24” (debonding cannot penetrate frame locations)

Disbond growth analysis took advantage of the commercially available ABAQUS
with VCCT (Virtual Crack Closure Technique)
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Damage Growth Consideration
Example of Disbond Growth Results
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Initial flaw = 0.96in

e Torsion load on fuselage
Is ramped from 0 in-Ib to
3.0 x108 in-Ib

e Crack front is not
perpendicular to stringer

as it propagates
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Damage Growth Consideration
Results for Various Initial Damage Size
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Ultimate load capability
reduction of the fuselage
due to completed
debonding of one stringer
IS minimal.

There is a significant
difference between stable
and unstable growth load
levels.

Sub-structure is considered
“completely failed” when
unstable growth load level
IS reached and the stringer
completely separately from
the skin for the entire frame
bay.

Torsion Load (in-Ib)
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1.10E+07

1.00E+07 -

9.00E+06 -

8.00E+06 -

7.00E+06 -

6.00E+06

5.00E+06

e Bond Failure

e Disbond Grow th

oy = [aminate failure

5 10 15 20

Initial Disbond Damage (in)

The Joint Advanced Materials and Structures Center of Excellence 18




Probabilistic Inputs:
External Loads
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* Inversely determined using the static strength of the
fuselage skin

 “Overload factors” are used for providing safety over
the wider scatter of material properties

— Limit load x 1.5 x overload factor = overall strength

* Distribution of peak load is taken from atmospheric
turbulence, which is approximately exponential

* FAA Static Strength Substantiation of Composite Airplane Structure
(Policy Statement PS-ACE100-2001-006)
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Results on Overload Factor
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POF vs. Overload Factor
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Results on Inspection Interval
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Effects of Damage Growth
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o Detrimental effect on residual strength due to damage
growth is small compared to original strength

* The effect of higher risk associated with larger damages
after growth is offset by the increase in probability of
detection by inspection

 The load range in which a damage could grow is very
small, thus the probability of a damage growth event is
also very small. The differences fall within noise of
random simulation.

. consideration of damage growth in damage tolerance of
composites is very much different from that of metallic structures
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Work Plan:
More Complex Structural Models

- P
Desired Capabilities:

Current Capabilities: e More user-defined random variables

= Fixed Set of Random Variables

_ - _ Damage-dependent Damage-independent
= Failure Criteria (one of the following): _ _
Variables Variables
Stress > Allowable
Load > Strength  ——e——
Temperature > Allowable * More complex structural model

Debond Area > Allowable
Airspeed > Flutter Speed

= Post-primary- Failure Criteria
= Non-random Aging-Humidity
Infiltration Model

o User-defined failure criteria

= Simplified Utility Equations

Mechanical Lo

A empengture
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Summary
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Work Accomplished:

= Developed a probabilistic method for determining POF and the inspection
intervals

= Developed a computer code (RELACS) for calculating POF and the inspection
intervals

= Mined statistical data on damage and other probabilistic parameters.

= Complete a user manual for RELACS

= Develop an example with FEA ABAQUS software for damage growth analysis
Work in Progress:

= Work with engineers at Boeing to apply RELACS to design and maintenance
of composite aircraft

= Develop more complex structural model, e.g. stochastic FE models

= Add user-defined parameters, e.g. damage growth under fatigue loads
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A Look Forward
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= Benefit to Aviation

— The present method allows engineers to design damage tolerant
composite structures for a predetermined level of reliability, as
required by FAR 25.

— The present study makes it possible to determine the
relationship among the reliability level, inspection interval,
Inspection method, and repair quality to minimize the
maintenance cost and risk of structural failure.

= Future needs

— A standardized methodology for establishing an optimal
Inspection schedule for aircraft manufacturers and operators.

— Enhanced damage data reporting requirements regulated by
the FAA.
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